Neurite orientation dispersion
Neurite orientation dispersion and density imaging (NODDI) provides a simplified yet sophisticated model of diffusion MRI, which separates the signal arising from three different tissue compartments: intraneurite water, extraneurite water and cerebrospinal fluid (CSF) 1) 2).
Twenty-four patients with high-grade glioma (HGG) in or adjacent to the corticospinal tract (CST) pathway and 12 matched healthy subjects underwent structural and diffusion MRI. The CSTs were reconstructed on both sides. The CST features including morphological features (track number, average track length, and track volume) and the diffusion parameter values including fractional anisotropy (FA), mean diffusivity (MD), intracellular volume fraction (ICVF), isotropic or free water volume fraction (ISOVF) and orientation dispersion index (ODI) along the CST were calculated. The CST features were compared between the affected and healthy side for HGG patients and between the left and right side for healthy subjects. The relative CST features were compared across the healthy subjects, patients with motor weakness and patients with normal muscle strength. A receiver operating characteristic (ROC) curve was applied to evaluate the performance of each relative CST characteristic for HGG-induced CST changes.
Results: Compared with the CST features on the healthy side, the tracking number, track volume, and FA along the CST changed significantly on the affected side for HGG patients (p < 0.05 for all), whereas MD and ICVF changed significantly on the affected side only for HGG patients with motor weakness (p = 0.012 for both). In patients with motor weakness, the relative MD was significantly higher (p < 0.001), whereas the relative FA and ICVF were significantly lower (p = 0.002 and <0.001) than those in patients with normal muscle strength. The relative ICVF had a similar area under the curve (AUC) to that of MD (AUC=0.953 and 0.969). Compared with the relative CST features in the healthy subjects, only the relative ICVF was significantly lower in HGG patients with normal muscle strength (p = 0.012).
Neurite orientation dispersion (NODDI) seems to be useful in reflecting the high-grade glioma infiltration to corticospinal tract (CST), and can evaluate the CST destruction with a performance similar to DTI by providing additional information about neurite density for HGG-induced CST injury 3).
2: Yuan T, Ying J, Li C, Jin L, Kang J, Shi Y, Gui S, Liu C, Wang R, Zuo Z, Zhang Y. <i>In Vivo</i> Characterization of Cortical and White Matter Microstructural Pathology in Growth Hormone-Secreting pituitary neuroendocrine tumor. Front Oncol. 2021 Apr 12;11:641359. doi: 10.3389/fonc.2021.641359. PMID: 33912457; PMCID: PMC8072046.
3: Shao X, Zhang X, Xu W, Zhang Z, Zhang J, Guo H, Jiang T, Zhang W. Neurite orientation dispersion and density imaging parameters may help for the evaluation of epileptogenic tubers in tuberous sclerosis complex patients. Eur Radiol. 2021 Mar 10. doi: 10.1007/s00330-020-07626-7. Epub ahead of print. PMID: 33693995.
4: Oehr LE, Yang JY, Chen J, Maller JJ, Seal ML, Anderson JFI. Investigating White Matter Tract Microstructural Changes at Six-Twelve Weeks following Mild Traumatic Brain Injury: A Combined Diffusion Tensor Imaging and Neurite Orientation Dispersion and Density Imaging Study. J Neurotrauma. 2021 Feb 4. doi: 10.1089/neu.2020.7310. Epub ahead of print. PMID: 33307950.
5: Goodman AM, Allendorfer JB, Blum AS, Bolding MS, Correia S, Ver Hoef LW, Gaston TE, Grayson LE, Kraguljac NV, Lahti AC, Martin AN, Monroe WS, Philip NS, Tocco K, Vogel V, LaFrance WC Jr, Szaflarski JP. White matter and neurite morphology differ in psychogenic nonepileptic seizures. Ann Clin Transl Neurol. 2020 Oct;7(10):1973-1984. doi: 10.1002/acn3.51198. Epub 2020 Sep 29. PMID: 32991786; PMCID: PMC7545605.
6: Kelly CE, Thompson DK, Cooper M, Pham J, Nguyen TD, Yang JYM, Ball G, Adamson C, Murray AL, Chen J, Inder TE, Cheong JLY, Doyle LW, Anderson PJ. White matter tracts related to memory and emotion in very preterm children. Pediatr Res. 2020 Sep 13:10.1038/s41390-020-01134-6. doi: 10.1038/s41390-020-01134-6. Epub ahead of print. PMID: 32920605; PMCID: PMC7954988.
7: Palacios EM, Owen JP, Yuh EL, Wang MB, Vassar MJ, Ferguson AR, Diaz-Arrastia R, Giacino JT, Okonkwo DO, Robertson CS, Stein MB, Temkin N, Jain S, McCrea M, MacDonald CL, Levin HS, Manley GT, Mukherjee P; TRACK-TBI Investigators. The evolution of white matter microstructural changes after mild traumatic brain injury: A longitudinal DTI and NODDI study. Sci Adv. 2020 Aug 7;6(32):eaaz6892. doi: 10.1126/sciadv.aaz6892. PMID: 32821816; PMCID: PMC7413733.
8: Shimizu K, Hara S, Hori M, Tanaka Y, Maehara T, Aoki S, Tazawa T, Nariai T. Transient Global Amnesia: A Diffusion and Perfusion MRI study. J Neuroimaging. 2020 Nov;30(6):828-832. doi: 10.1111/jon.12745. Epub 2020 Jun 29. PMID: 32598567.
9: Jiang H, Can-Xin X, Pan SJ, Na-Ying H, Sun YH, Yan FH, Bian LG, Liu C, Sun QF. The aging-liked alterations in Cushing's disease: A neurite orientation dispersion and density imaging (NODDI) study. J Neurol Sci. 2020 Jun 15;413:116769. doi: 10.1016/j.jns.2020.116769. Epub 2020 Mar 4. PMID: 32169741.
10: Winston GP, Vos SB, Caldairou B, Hong SJ, Czech M, Wood TC, Wastling SJ, Barker GJ, Bernhardt BC, Bernasconi N, Duncan JS, Bernasconi A. Microstructural imaging in temporal lobe epilepsy: Diffusion imaging changes relate to reduced neurite density. Neuroimage Clin. 2020;26:102231. doi: 10.1016/j.nicl.2020.102231. Epub 2020 Feb 28. PMID: 32146320; PMCID: PMC7063236.
11: Andica C, Kamagata K, Hatano T, Saito Y, Uchida W, Ogawa T, Takeshige-Amano H, Hagiwara A, Murata S, Oyama G, Shimo Y, Umemura A, Akashi T, Wada A, Kumamaru KK, Hori M, Hattori N, Aoki S. Neurocognitive and psychiatric disorders-related axonal degeneration in Parkinson's disease. J Neurosci Res. 2020 May;98(5):936-949. doi: 10.1002/jnr.24584. Epub 2020 Feb 5. PMID: 32026517; PMCID: PMC7154645.
12: Gregory S, Johnson E, Byrne LM, Rodrigues FB, Henderson A, Moss J, Thomas D, Zhang H, De Vita E, Tabrizi SJ, Rees G, Scahill RI, Wild EJ. Characterizing White Matter in Huntington's Disease. Mov Disord Clin Pract. 2019 Nov 28;7(1):52-60. doi: 10.1002/mdc3.12866. PMID: 31970212; PMCID: PMC6962665.
13: Easson K, Rohlicek CV, Houde JC, Gilbert G, Saint-Martin C, Fontes K, Majnemer A, Marelli A, Wintermark P, Descoteaux M, Brossard-Racine M. Quantification of apparent axon density and orientation dispersion in the white matter of youth born with congenital heart disease. Neuroimage. 2020 Jan 15;205:116255. doi: 10.1016/j.neuroimage.2019.116255. Epub 2019 Oct 9. PMID: 31605826.
14: Schmitz J, Fraenz C, Schlüter C, Friedrich P, Jung RE, Güntürkün O, Genç E, Ocklenburg S. Hemispheric asymmetries in cortical gray matter microstructure identified by neurite orientation dispersion and density imaging. Neuroimage. 2019 Apr 1;189:667-675. doi: 10.1016/j.neuroimage.2019.01.079. Epub 2019 Feb 1. PMID: 30716458.
15: Hara S, Hori M, Ueda R, Hayashi S, Inaji M, Tanaka Y, Maehara T, Ishii K, Aoki S, Nariai T. Unraveling Specific Brain Microstructural Damage in Moyamoya Disease Using Diffusion Magnetic Resonance Imaging and Positron Emission Tomography. J Stroke Cerebrovasc Dis. 2019 Apr;28(4):1113-1125. doi: 10.1016/j.jstrokecerebrovasdis.2018.12.038. Epub 2019 Jan 21. PMID: 30679013.
16: Churchill NW, Caverzasi E, Graham SJ, Hutchison MG, Schweizer TA. White matter during concussion recovery: Comparing diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). Hum Brain Mapp. 2019 Apr 15;40(6):1908-1918. doi: 10.1002/hbm.24500. Epub 2018 Dec 26. PMID: 30585674; PMCID: PMC6865569.
17: Hara S, Hori M, Inaji M, Maehara T, Aoki S, Nariai T. Regression of White Matter Hyperintensity after Indirect Bypass Surgery in a Patient with Moyamoya Disease. Magn Reson Med Sci. 2019 Oct 15;18(4):247-248. doi: 10.2463/mrms.ci.2018-0088. Epub 2018 Dec 6. PMID: 30518734; PMCID: PMC6883095.
18: Gao Y, Schilling KG, Stepniewska I, Xu J, Landman BA, Dawant BM, Anderson AW. Tests of clustering thalamic nuclei based on various dMRI models in the squirrel monkey brain. Proc SPIE Int Soc Opt Eng. 2018 Mar;10578:1057805. doi: 10.1117/12.2293879. PMID: 30467451; PMCID: PMC6241534.
19: Kadota Y, Hirai T, Azuma M, Hattori Y, Khant ZA, Hori M, Saito K, Yokogami K, Takeshima H. Differentiation between glioblastoma and solitary brain metastases using neurite orientation dispersion and density imaging. J Neuroradiol. 2020 May;47(3):197-202. doi: 10.1016/j.neurad.2018.10.005. Epub 2018 Nov 12. PMID: 30439396.
20: Hara S, Hori M, Murata S, Ueda R, Tanaka Y, Inaji M, Maehara T, Aoki S, Nariai T. Microstructural Damage in Normal-Appearing Brain Parenchyma and Neurocognitive Dysfunction in Adult Moyamoya Disease. Stroke. 2018 Oct;49(10):2504-2507. doi: 10.1161/STROKEAHA.118.022367. PMID: 30355113.
21: Masjoodi S, Hashemi H, Oghabian MA, Sharifi G. Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging. J Biomed Phys Eng. 2018 Sep 1;8(3):251-260. PMID: 30320029; PMCID: PMC6169116.
22: Chougar L, Hagiwara A, Maekawa T, Hori M, Andica C, Iimura Y, Sugano H, Aoki S. Limitation of neurite orientation dispersion and density imaging for the detection of focal cortical dysplasia with a “transmantle sign”. Phys Med. 2018 Aug;52:183-184. doi: 10.1016/j.ejmp.2018.06.011. Epub 2018 Jul 21. PMID: 30037453.
23: Maximov II, Tonoyan AS, Pronin IN. Differentiation of glioma malignancy grade using diffusion MRI. Phys Med. 2017 Aug;40:24-32. doi: 10.1016/j.ejmp.2017.07.002. Epub 2017 Jul 13. PMID: 28712716.
24: Slattery CF, Zhang J, Paterson RW, Foulkes AJM, Carton A, Macpherson K, Mancini L, Thomas DL, Modat M, Toussaint N, Cash DM, Thornton JS, Henley SMD, Crutch SJ, Alexander DC, Ourselin S, Fox NC, Zhang H, Schott JM. ApoE influences regional white-matter axonal density loss in Alzheimer's disease. Neurobiol Aging. 2017 Sep;57:8-17. doi: 10.1016/j.neurobiolaging.2017.04.021. Epub 2017 May 3. PMID: 28578156; PMCID: PMC5538347.
25: Churchill NW, Caverzasi E, Graham SJ, Hutchison MG, Schweizer TA. White matter microstructure in athletes with a history of concussion: Comparing diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). Hum Brain Mapp. 2017 Aug;38(8):4201-4211. doi: 10.1002/hbm.23658. Epub 2017 May 29. PMID: 28556431; PMCID: PMC6866962.
26: Vellmer S, Tonoyan AS, Suter D, Pronin IN, Maximov II. Validation of DWI pre-processing procedures for reliable differentiation between human brain gliomas. Z Med Phys. 2018 Feb;28(1):14-24. doi: 10.1016/j.zemedi.2017.04.005. Epub 2017 May 19. PMID: 28532604.
27: Kamiya K, Hori M, Irie R, Miyajima M, Nakajima M, Kamagata K, Tsuruta K, Saito A, Nakazawa M, Suzuki Y, Mori H, Kunimatsu A, Arai H, Aoki S, Abe O. Diffusion imaging of reversible and irreversible microstructural changes within the corticospinal tract in idiopathic normal pressure hydrocephalus. Neuroimage Clin. 2017 Mar 11;14:663-671. doi: 10.1016/j.nicl.2017.03.003. PMID: 28348958; PMCID: PMC5358533.
The NODDI can effectively evaluate the condition of neurites in the CST of iNPH patients, and the ODI could be clinically useful in the diagnosis of iNPH 4).
29: Billiet T, Vandenbulcke M, Mädler B, Peeters R, Dhollander T, Zhang H, Deprez S, Van den Bergh BR, Sunaert S, Emsell L. Age-related microstructural differences quantified using myelin water imaging and advanced diffusion MRI. Neurobiol Aging. 2015 Jun;36(6):2107-21. doi: 10.1016/j.neurobiolaging.2015.02.029. Epub 2015 Mar 7. PMID: 25840837.
30: Billiet T, Mädler B, D'Arco F, Peeters R, Deprez S, Plasschaert E, Leemans A, Zhang H, den Bergh BV, Vandenbulcke M, Legius E, Sunaert S, Emsell L. Characterizing the microstructural basis of “unidentified bright objects” in neurofibromatosis type 1: A combined in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis. Neuroimage Clin. 2014 Apr 13;4:649-58. doi: 10.1016/j.nicl.2014.04.005. PMID: 24936416; PMCID: PMC4053637.
31: Winston GP, Micallef C, Symms MR, Alexander DC, Duncan JS, Zhang H. Advanced diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy. Epilepsy Res. 2014 Feb;108(2):336-9. doi: 10.1016/j.eplepsyres.2013.11.004. Epub 2013 Nov 17. PMID: 24315018; PMCID: PMC3969285.