Molecular fluorescence-guided surgery
1: Kurbegovic S, Juhl K, Sørensen KK, Leth J, Willemoe GL, Christensen A, Adams Y, Jensen AR, von Buchwald C, Skjøth-Rasmussen J, Ploug M, Jensen KJ, Kjaer A. IRDye800CW labeled uPAR-targeting peptide for fluorescence-guided glioblastoma surgery: Preclinical studies in orthotopic xenografts. Theranostics. 2021 May 21;11(15):7159-7174. doi: 10.7150/thno.49787. PMID: 34158842; PMCID: PMC8210614.
2: Azari F, Kennedy G, Bernstein E, Delikatny J, Lee JYK, Kucharczuk J, Low PS, Singhal S. Evaluation of OTL38-Generated Tumor-to-Background Ratio in Intraoperative Molecular Imaging-Guided Lung Cancer Resections. Mol Imaging Biol. 2021 Jun 8:10.1007/s11307-021-01618-9. doi: 10.1007/s11307-021-01618-9. Epub ahead of print. PMID: 34101106; PMCID: PMC8651846.
3: Dijkstra BM, de Jong M, Stroet MCM, Andreae F, Dulfer SE, Everts M, Kruijff S, Nonnekens J, den Dunnen WFA, Kruyt FAE, Groen RJM. Correction to: Evaluation of Ac-Lys0(IRDye800CW)Tyr3-octreotate as a novel tracer for SSTR2-targeted molecular fluorescence guided surgery in meningioma. J Neurooncol. 2021 Jun;153(2):223. doi: 10.1007/s11060-021-03769-9. Erratum for: J Neurooncol. 2021 Jun;153(2):211-222. PMID: 34014425; PMCID: PMC8211574.
4: Azari F, Kennedy G, Bernstein E, Hadjipanayis C, Vahrmeijer A, Smith B, Rosenthal E, Sumer B, Tian J, Henderson E, Lee A, Nguyen Q, Gibbs S, Pogue B, Orringer D, Charalampaki C, Martin L, Tanyi J, Lee M, Lee JY, Singhal S. Intraoperative molecular imaging clinical trials: a review of 2020 conference proceedings. J Biomed Opt. 2021 May;26(5):050901. doi: 10.1117/1.JBO.26.5.050901. PMID: 34002555; PMCID: PMC8126806.
5: Stroet MCM, Dijkstra BM, Dulfer SE, Kruijff S, den Dunnen WFA, Kruyt FAE, Groen RJM, Seimbille Y, Panth KM, Mezzanotte L, Lowik CWGM, de Jong M. Necrosis binding of Ac-Lys0(IRDye800CW)-Tyr3-octreotate: a consequence from cyanine-labeling of small molecules. EJNMMI Res. 2021 May 10;11(1):47. doi: 10.1186/s13550-021-00789-4. PMID: 33970376; PMCID: PMC8110618.
6: Proescholdt MA, Schödel P, Doenitz C, Pukrop T, Höhne J, Schmidt NO, Schebesch KM. The Management of Brain Metastases-Systematic Review of Neurosurgical Aspects. Cancers (Basel). 2021 Mar 31;13(7):1616. doi: 10.3390/cancers13071616. PMID: 33807384; PMCID: PMC8036330.
7: Dijkstra BM, de Jong M, Stroet MCM, Andreae F, Dulfer SE, Everts M, Kruijff S, Nonnekens J, den Dunnen WFA, Kruyt FAE, Groen RJM. Evaluation of Ac- Lys0(IRDye800CW)Tyr3-octreotate as a novel tracer for SSTR2-targeted molecular fluorescence guided surgery in meningioma. J Neurooncol. 2021 Jun;153(2):211-222. doi: 10.1007/s11060-021-03739-1. Epub 2021 Mar 26. Erratum in: J Neurooncol. 2021 May 20;: PMID: 33768405; PMCID: PMC8211583.
8: Zhou Q, Vega Leonel JCM, Santoso MR, Wilson C, van den Berg NS, Chan CT, Aryal M, Vogel H, Cayrol R, Mandella MJ, Schonig F, Lu G, Gambhir SS, Moseley ME, Rosenthal EL, Grant GA. Molecular imaging of a fluorescent antibody against epidermal growth factor receptor detects high-grade glioma. Sci Rep. 2021 Mar 11;11(1):5710. doi: 10.1038/s41598-021-84831-4. PMID: 33707521; PMCID: PMC7952570.
9: De Ravin E, Phan HAT, Harmsen S, Cho SS, Teng CW, Petersson EJ, White C, Galban EM, Hess R, Lee JYK. Somatostatin Receptor as a Molecular Imaging Target in Human and Canine Cushing Disease. World Neurosurg. 2021 May;149:94-102. doi: 10.1016/j.wneu.2021.02.034. Epub 2021 Feb 16. PMID: 33601082.
10: Belykh E, Jubran JH, George LL, Bardonova L, Healey DR, Georges JF, Quarles CC, Eschbacher JM, Mehta S, Scheck AC, Nakaji P, Preul MC. Molecular Imaging of Glucose Metabolism for Intraoperative Fluorescence Guidance During Glioma Surgery. Mol Imaging Biol. 2021 Aug;23(4):586-596. doi: 10.1007/s11307-021-01579-z. Epub 2021 Feb 5. PMID: 33544308.
11: He K, Chi C, Li D, Zhang J, Niu G, Lv F, Wang J, Che W, Zhang L, Ji N, Zhu Z, Tian J, Chen X. Resection and survival data from a clinical trial of glioblastoma multiforme-specific IRDye800-BBN fluorescence-guided surgery. Bioeng Transl Med. 2020 Aug 31;6(1):e10182. doi: 10.1002/btm2.10182. PMID: 33532584; PMCID: PMC7823121.
Intraoperative imaging technologies, specifically 5-ALA and iMRI, may be of benefit in maximising extent of resection in participants with high-grade glioma. However, this is based on low- to very low-certainty evidence. Therefore, the short- and long-term neurological effects are uncertain. Effects of image-guided surgery on overall survival, progression-free survival, and quality of life are unclear. Network and traditional meta-analyses were not possible due to the identified high risk of bias, heterogeneity, and small trials included in this review. A brief economic commentary found limited economic evidence for the equivocal use of iMRI compared with conventional surgery. In terms of costs, one non-systematic review of economic studies suggested that, compared with standard surgery, use of image-guided surgery has an uncertain effect on costs and that 5-ALA was more costly. Further research, including completion of ongoing trials of ultrasound-guided surgery, is needed. 1).
13: Li D, Liu Q, Qi Q, Shi H, Hsu EC, Chen W, Yuan W, Wu Y, Lin S, Zeng Y, Xiao Z, Xu L, Zhang Y, Stoyanova T, Jia W, Cheng Z. Gold Nanoclusters for NIR-II Fluorescence Imaging of Bones. Small. 2020 Oct;16(43):e2003851. doi: 10.1002/smll.202003851. Epub 2020 Sep 30. PMID: 33000882.
14: Ni XR, Zhao YY, Cai HP, Yu ZH, Wang J, Chen FR, Yu YJ, Feng GK, Chen ZP. Transferrin receptor 1 targeted optical imaging for identifying glioma margin in mouse models. J Neurooncol. 2020 Jun;148(2):245-258. doi: 10.1007/s11060-020-03527-3. Epub 2020 May 13. PMID: 32405996.
15: Müther M, Stummer W. Ependymal fluorescence in fluorescence-guided resection of malignant glioma: a systematic review. Acta Neurochir (Wien). 2020 Feb;162(2):365-372. doi: 10.1007/s00701-019-04144-4. Epub 2019 Nov 21. PMID: 31754847.
16: Kitagawa Y, Tanaka S, Kuriki Y, Yamamoto K, Ogasawara A, Nejo T, Matsuura R, Koike T, Hana T, Takahashi S, Nomura M, Takayanagi S, Mukasa A, Kamiya M, Urano Y, Saito N. Spray Fluorescent Probes for Fluorescence-Guided Neurosurgery. Front Oncol. 2019 Aug 6;9:727. doi: 10.3389/fonc.2019.00727. PMID: 31448231; PMCID: PMC6691768.
17: Charalampaki P, Nakamura M, Athanasopoulos D, Heimann A. Confocal-Assisted Multispectral Fluorescent Microscopy for Brain Tumor Surgery. Front Oncol. 2019 Jul 18;9:583. doi: 10.3389/fonc.2019.00583. PMID: 31380264; PMCID: PMC6657348.
18: Almiron Bonnin DA, Havrda MC, Lee MC, Evans L, Ran C, Qian DC, Harrington LX, Valdes PA, Cheng C, Amos CI, Harris BT, Paulsen KD, Roberts DW, Israel MA. Characterizing the heterogeneity in 5-aminolevulinic acid-induced fluorescence in glioblastoma. J Neurosurg. 2019 May 24;132(6):1706-1714. doi: 10.3171/2019.2.JNS183128. PMID: 31125970.
19: Erkkilä MT, Bauer B, Hecker-Denschlag N, Madera Medina MJ, Leitgeb RA, Unterhuber A, Gesperger J, Roetzer T, Hauger C, Drexler W, Widhalm G, Andreana M. Widefield fluorescence lifetime imaging of protoporphyrin IX for fluorescence-guided neurosurgery: An ex vivo feasibility study. J Biophotonics. 2019 Jun;12(6):e201800378. doi: 10.1002/jbio.201800378. Epub 2019 Feb 20. PMID: 30636030; PMCID: PMC7065606.
20: Kröger S, Niehoff AC, Jeibmann A, Sperling M, Paulus W, Stummer W, Karst U. Complementary Molecular and Elemental Mass-Spectrometric Imaging of Human Brain Tumors Resected by Fluorescence-Guided Surgery. Anal Chem. 2018 Oct 16;90(20):12253-12260. doi: 10.1021/acs.analchem.8b03516. Epub 2018 Oct 2. PMID: 30215510.
21: Zhang DY, Singhal S, Lee JYK. Optical Principles of Fluorescence-Guided Brain Tumor Surgery: A Practical Primer for the Neurosurgeon. Neurosurgery. 2019 Sep 1;85(3):312-324. doi: 10.1093/neuros/nyy315. PMID: 30085129.
22: Dijkstra BM, Motekallemi A, den Dunnen WFA, Jeltema JR, van Dam GM, Kruyt FAE, Groen RJM. SSTR-2 as a potential tumour-specific marker for fluorescence- guided meningioma surgery. Acta Neurochir (Wien). 2018 Aug;160(8):1539-1546. doi: 10.1007/s00701-018-3575-z. Epub 2018 Jun 1. PMID: 29858948; PMCID: PMC6060877.
23: Li D, Zhang J, Chi C, Xiao X, Wang J, Lang L, Ali I, Niu G, Zhang L, Tian J, Ji N, Zhu Z, Chen X. First-in-human study of PET and optical dual-modality image-guided surgery in glioblastoma using 68Ga-IRDye800CW-BBN. Theranostics. 2018 Apr 3;8(9):2508-2520. doi: 10.7150/thno.25599. PMID: 29721096; PMCID: PMC5928906.
24: Brokinkel B, Kröger S, Senner V, Jeibmann A, Karst U, Stummer W. Visualizing protoporphyrin IX formation in the dura tail of meningiomas by mass spectrometry imaging. Acta Neurochir (Wien). 2018 Jul;160(7):1433-1437. doi: 10.1007/s00701-018-3488-x. Epub 2018 Feb 15. PMID: 29450654.
25: Aldave G, Gonzalez-Huarriz M, Rubio A, Romero JP, Ravi D, Miñana B, Cuadrado-Tejedor M, García-Osta A, Verhaak R, Xipell E, Martinez-Vélez N, de la Rocha AA, Puigdelloses M, García-Moure M, Marigil M, Gállego Pérez-Larraya J, Marín-Bejar O, Huarte M, Carro MS, Ferrarese R, Belda-Iniesta C, Ayuso A, Prat- Acín R, Pastor F, Díez-Valle R, Tejada S, Alonso MM. The aberrant splicing of BAF45d links splicing regulation and transcription in glioblastoma. Neuro Oncol. 2018 Jun 18;20(7):930-941. doi: 10.1093/neuonc/noy007. PMID: 29373718; PMCID: PMC6007380.
26: Kim S, Kim JE, Kim YH, Hwang T, Kim SK, Xu WJ, Shin JY, Kim JI, Choi H, Kim HC, Cho HR, Choi A, Chowdhury T, Seo Y, Dho YS, Kim JW, Kim DG, Park SH, Kim H, Choi SH, Park S, Lee SH, Park CK. Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma. Sci Rep. 2017 Sep 22;7(1):12221. doi: 10.1038/s41598-017-12557-3. PMID: 28939850; PMCID: PMC5610329.
27: Tang J, Huang N, Zhang X, Zhou T, Tan Y, Pi J, Pi L, Cheng S, Zheng H, Cheng Y. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma. Int J Nanomedicine. 2017 May 22;12:3899-3911. doi: 10.2147/IJN.S133166. PMID: 28579776; PMCID: PMC5446962.
28: Inogés S, Tejada S, de Cerio AL, Gállego Pérez-Larraya J, Espinós J, Idoate MA, Domínguez PD, de Eulate RG, Aristu J, Bendandi M, Pastor F, Alonso M, Andreu E, Cardoso FP, Valle RD. A phase II trial of autologous dendritic cell vaccination and radiochemotherapy following fluorescence-guided surgery in newly diagnosed glioblastoma patients. J Transl Med. 2017 May 12;15(1):104. doi: 10.1186/s12967-017-1202-z. PMID: 28499389; PMCID: PMC5427614.
29: D'Amico RS, Englander ZK, Canoll P, Bruce JN. Extent of Resection in Glioma-A Review of the Cutting Edge. World Neurosurg. 2017 Jul;103:538-549. doi: 10.1016/j.wneu.2017.04.041. Epub 2017 Apr 17. PMID: 28427971.
30: Senders JT, Muskens IS, Schnoor R, Karhade AV, Cote DJ, Smith TR, Broekman ML. Agents for fluorescence-guided glioma surgery: a systematic review of preclinical and clinical results. Acta Neurochir (Wien). 2017 Jan;159(1):151-167. doi: 10.1007/s00701-016-3028-5. Epub 2016 Nov 22. PMID: 27878374; PMCID: PMC5177668.
31: Belykh E, Martirosyan NL, Yagmurlu K, Miller EJ, Eschbacher JM, Izadyyazdanabadi M, Bardonova LA, Byvaltsev VA, Nakaji P, Preul MC. Intraoperative Fluorescence Imaging for Personalized Brain Tumor Resection: Current State and Future Directions. Front Surg. 2016 Oct 17;3:55. doi: 10.3389/fsurg.2016.00055. PMID: 27800481; PMCID: PMC5066076.
32: Elliott JT, Samkoe KS, Davis SC, Gunn JR, Paulsen KD, Roberts DW, Pogue BW. Image-derived arterial input function for quantitative fluorescence imaging of receptor-drug binding in vivo. J Biophotonics. 2016 Mar;9(3):282-95. doi: 10.1002/jbio.201500162. Epub 2015 Sep 9. PMID: 26349671; PMCID: PMC5313240.
33: Pogue BW, Paulsen KD, Hull SM, Samkoe KS, Gunn J, Hoopes J, Roberts DW, Strong TV, Draney D, Feldwisch J. Advancing Molecular-Guided Surgery through probe development and testing in a moderate cost evaluation pipeline. Proc SPIE Int Soc Opt Eng. 2015 Mar 4;9311:931112. doi: 10.1117/12.2083224. PMID: 25914500; PMCID: PMC4405779.
34: Swanson KI, Clark PA, Zhang RR, Kandela IK, Farhoud M, Weichert JP, Kuo JS. Fluorescent cancer-selective alkylphosphocholine analogs for intraoperative glioma detection. Neurosurgery. 2015 Feb;76(2):115-23; discussion 123-4. doi: 10.1227/NEU.0000000000000622. PMID: 25549194; PMCID: PMC4343207.
35: Moiyadi A, Syed P, Srivastava S. Fluorescence-guided surgery of malignant gliomas based on 5-aminolevulinic acid: paradigm shifts but not a panacea. Nat Rev Cancer. 2014 Feb;14(2):146. doi: 10.1038/nrc3566-c1. PMID: 24457418.
36: Ackerman SE, Wilson CM, Kahn SA, Kintzing JR, Jindal DA, Cheshier SH, Grant GA, Cochran JR. A Bioengineered Peptide that Localizes to and Illuminates Medulloblastoma: A New Tool with Potential for Fluorescence-Guided Surgical Resection. Cureus. 2014;6(9):e207. doi: 10.7759/cureus.207. Epub 2014 Sep 17. PMID: 28729960; PMCID: PMC5515084.
37: Chen X, Wang C, Teng L, Liu Y, Chen X, Yang G, Wang L, Liu H, Liu Z, Zhang D, Zhang Y, Guan H, Li X, Fu C, Zhao B, Yin F, Zhao S. Calcitriol enhances 5-aminolevulinic acid-induced fluorescence and the effect of photodynamic therapy in human glioma. Acta Oncol. 2014 Mar;53(3):405-13. doi: 10.3109/0284186X.2013.819993. Epub 2013 Sep 13. PMID: 24032442.
38: Suzuki T, Wada S, Eguchi H, Adachi J, Mishima K, Matsutani M, Nishikawa R, Nishiyama M. Cadherin 13 overexpression as an important factor related to the absence of tumor fluorescence in 5-aminolevulinic acid-guided resection of glioma. J Neurosurg. 2013 Nov;119(5):1331-9. doi: 10.3171/2013.7.JNS122340. Epub 2013 Sep 6. PMID: 24010971.