Oblique Lateral Interbody Fusion Case Series
2019
Few studies have reported direct comparative data of lumbar spine angles between direct lateral interbody fusion (DLIF) and oblique lateral interbody fusion (OLIF). The purpose of the study of Ko et al., was to investigate the clinical and radiological outcomes of DLIF and OLIF, and determine influential factors.
The same surgeon performed DLIF from May 2011 to August 2014 (n=201) and OLIF from September 2014 to September 2016 (n=142). Radiological parameters, cage height, cage angle (CA), cage width (CW), and cage location were assessed. They checked the cage location as the distance (mm) from the anterior margin of the disc space to the anterior metallic indicator of the cage in lateral images.
There were significant differences in intervertebral foramen height (FH; 22.0±2.4 vs. 21.0±2.1 mm, p<0.001) and sagittal disc angle (SDA; 8.7±3.3 vs. 11.3±3.2˚, p<0.001) between the DLIF and OLIF groups at 7 days postoperatively. CA (9.6±3.0 vs. 8.1±2.9˚, p<0.001) and CW (21.2±1.6 vs. 19.2±1.9 mm, p<0.001) were significantly larger in the OLIF group compared to the DLIF group. The cage location of the OLIF group was significantly more anterior than the DLIF group (6.7±3.0 vs. 9.1±3.6 mm, p<0.001). Cage subsidence at 1 year postoperatively was significantly worse in the DLIF group compared to the OLIF group (1.0±1.5 vs. 0.4±1.1 mm, p=0.001). Cage location was significantly correlated with postoperative FH (β=0.273, p<0.001) and postoperative SDA (β=-0.358, p<0.001). CA was significantly correlated with postoperative FH (β=-0.139, p=0.044) and postoperative SDA (β=0.236, p=0.001). Cage location (β=0.293, p<0.001) and CW (β=-0.225, p<0.001) were significantly correlated with cage subsidence.
The cage location, CA, and CW seem to be important factors which result in the different-radiological outcomes between DLIF and OLIF.
With DLIF, it was difficult to estimate the cage location through the tubular retractor due to the limited visualization of anterior disc margin which could be a kind of landmark for cage location. However, since the anterior disc margin can be directly identified during OLIF, it is more advantageous to position the cage anteriorly. The more anterior annulotomy and discectomy seemed to secure higher anterior disc space for the high angle cage with greater anterior height, which also might affect the more frequent use of higher angle cage in the OLIF group 1).
12 patients with extruded or sequestered disc were treated with ventral neural decompression under microscopic vision via the working corridor of routine OLIF. Their clinical data was gathered and analyzed retrospectively. The clinical efficacy was evaluated by Oswestry disability index(ODI) , visual analog scale scores(VAS), and relevant radiographic parameters.
All operations went smoothly, with an average operation time of (151.7±24.5) min, blood loss (58.5±21.3) ml. Postoperative MRI, significant improvements in VAS for leg, ODI(P<0.01, P<0.01) confirmed the satisfactory ventral neural decompression. Radiographic parameters including disc height, and segmental disc angle improved significantly(P<0.01, P<0.01). There was no significant difference between preoperative and postoperative lumbar lordosis (P=0.255). During the follow-up, endplate fracture was observed in 1 case. No major vessels, neural or dural injury were observed.
Microscopic ventral neural decompression with OLIF could achieve satisfactory clinical results with minimal complications in selected patients with extruded or sequestered disc 2).
303 OLLIF procedures on 568 levels performed by the same surgeon. For a single-level OLLIF, mean surgery time was 56.6 ± 37.7 minutes, with a blood loss of 42.2 ± 31.1 mL, fluoroscopy time of 198.8 ± 87.2 seconds and a hospital stay of 2.2 ± 1.7 days. At the one-year follow-up, 10-point pain scale scores improved from 8.6 ± 1.3 to 4.1 ± 3.0 (p < 0.001). Total Oswestry disability index score improved from 56.6% ± 15.3% to 38.6% ± 21.4% (p < 0.001). At the one-year follow-up, 15 (5%) patients had mild nerve root irritation defined as sensory symptoms and motor weakness better than 4/5. Only one patient had neuropraxia due to weakness (3/5). There was one case (0.3%) of superficial wound infection and one case of bleeding into the psoas major. Reoperation within one year was performed for 14 (4.7%) patients. Interbody fusion was achieved in 98.7% of levels. While OLLIF has previously been described, this study is the first to present clinical, patient-reported, and radiological outcomes of OLLIF. Review of the literature shows that OLLIF produces perioperative outcomes, complication rates, and fusion rates that compare favorably with similar procedures. We establish that OLLIF is a safe, efficient and efficacious procedure for fusions of the lumbar spine 3).
2018
A total of 43 consecutive patients who underwent MIS-DLIF or MIS-OLIF for various L4/L5 level pathologies between November 2011 and April 2014 by a single surgeon were retrospectively reviewed. A complication classification based on the relation to surgical procedure and effect duration was used. Perioperative complications until 3-month postoperatively were reviewed for the patients. Radiologic results including the cage location and sagittal alignment were also assessed with plain radiography.
There were no significant statistical differences in perioperative parameters and early clinical outcome between 2 groups. Overall, there were 13 (59.1%) approach-related complications in the DLIF group and 3 (14.3%) in the OLIF group. In the DLIF group, 3 (45.6%) were classified as persistent, however, there was no persistent complication in the OLIF group. In the OLIF group, cage is located mostly in the middle 1/3 of vertebral body, significantly increasing posterior disk space height and foraminal height compared with the DLIF group. Global and segmental lumbar lordosis was greater in the DLIF group due to anterior cage position without statistical significance.
In this report of L4/L5 level diseases, the OLIF technique may decrease approach-related perioperative morbidities by eliminating the risk of unwanted muscle and nerve manipulations. Using orthogonal maneuver, cage could be safely placed more posteriorly, resulting in better disk and foraminal height restoration 4).
Sixty-three patients who underwent OLIF procedure were enrolled, including 29 patients who were less than 65 years of age and 34 patients who were over 65 years of age. Fusion rate, change of disc height and lumbar lordotic angle, Numeric Rating Scale (NRS), return to daily activity, patient's satisfaction rate (PSR), and Oswestry disability index (ODI) were used to assess clinical and functional outcomes.
The mean NRS scores for back and leg pain decreased, respectively, from 4.6 and 5.9 to 2.3 and 1.8 in the group A (less than 65 years) and from 4.5 and 6.8 to 2.6 and 2.2 in the group B (over 65 years) at the final follow-up period. The mean ODI scores improved from 48.4 to 24.0% in the group A and from 46.5 to 25.2% in the group B at the final follow-up period. In both groups, the NRS and ODI scores significantly changed preoperatively to postoperatively (p < 0.001). However, statistical analysis yielded no significant difference in postoperative NRS/ODI scores between two groups. In both groups, the changes in the disc height, segmental lordosis, and fusion rate between the preoperative and postoperative periods were significant. The amount of change between preoperative and postoperative disc height, segmental lordosis, and whole lumbar lordosis demonstrated significant intergroup differences (p < 0.05). Overall perioperative complications occurred in 8 of 29 (27.6%) patients in the group A and in 10 of 34 (29.4%) patients in the group B. In both groups, the major complication incidence was 0 and 3%, respectively.
Although there was the slightly high incidence of complication associated with high rate of co-morbidities in elderly patients, OLIF for degenerative lumbar diseases in elderly patients showed favorable clinical and radiological outcomes 5).
Abbasi et al., presented data from 69 consecutive OLLIF surgeries on 128 levels with a control group of 55 consecutive open transformational lumbar interbody fusions (TLIFs) on 125 levels. For a single level OLLIF, the mean surgery time is 69 minutes (min) and blood loss is 29 ml. Surgery time was approximately twice as fast as open TLIF (mean: 135 min) and blood loss is reduced by over 80% compared to TLIF (mean: 355 ml).
OLLIF is a minimally invasive fusion that significantly reduces surgery times compared to open surgery. OLLIF overcomes the difficulties of traditional open fusions, making it a safe and technically less demanding surgery than open or minimally invasive TLIF 6).