Glioma Radiomics

Various approaches to image analysis for predicting the genetic profile of gliomas have emerged in recent years 1) 2) 3).

Radiomics features can be extracted from segmentations and be used to train machine learning algorithms


The objective of Rauch et al. was to develop a comprehensive deep learning assisted radiomics model for assessing not only overall survival in LGG, but also the likelihood of future malignancy and glioma growth velocity. Thus, they retrospectively included 349 low-grade glioma patients to develop a prediction model using clinical, anatomical, and preoperative MRI data. Before performing radiomics analysis, a U2-model for glioma segmentation was utilized to prevent bias, yielding a mean whole tumor Dice score of 0.837. Overall survival and time to malignancy were estimated using Cox proportional hazard models. In a postoperative model, we derived a C-index of 0.82 (CI 0.79-0.86) for the training cohort over 10 years and 0.74 (Cl 0.64-0.84) for the test cohort. Preoperative models showed a C-index of 0.77 (Cl 0.73-0.82) for training and 0.67 (Cl 0.57-0.80) test sets. Our findings suggest that we can reliably predict the survival of a heterogeneous population of glioma patients in both preoperative and postoperative scenarios. Further, we demonstrate the utility of radiomics in predicting biological tumor activity, such as the time to malignancy and the LGG growth rate 4).


1)
Gutta S, Acharya J, Shiroishi MS, Hwang D, Nayak KS. Improved Glioma Grading Using Deep Convolutional Neural Networks. AJNR Am J Neuroradiol. 2021 Jan;42(2):233-239. doi: 10.3174/ajnr.A6882. Epub 2020 Dec 10. PMID: 33303522; PMCID: PMC7872170.
2)
Cluceru J, Interian Y, Phillips JJ, Molinaro AM, Luks TL, Alcaide-Leon P, Olson MP, Nair D, LaFontaine M, Shai A, Chunduru P, Pedoia V, Villanueva-Meyer JE, Chang SM, Lupo JM. Improving the noninvasive classification of glioma genetic subtype with deep learning and diffusion-weighted imaging. Neuro Oncol. 2021 Oct 15:noab238. doi: 10.1093/neuonc/noab238. Epub ahead of print. PMID: 34653254.
3)
Kawaguchi RK, Takahashi M, Miyake M, Kinoshita M, Takahashi S, Ichimura K, Hamamoto R, Narita Y, Sese J. Assessing Versatile Machine Learning Models for Glioma Radiogenomic Studies across Hospitals. Cancers (Basel). 2021 Jul 19;13(14):3611. doi: 10.3390/cancers13143611. PMID: 34298824; PMCID: PMC8306149.
4)
Rauch P, Stefanits H, Aichholzer M, Serra C, Vorhauer D, Wagner H, Böhm P, Hartl S, Manakov I, Sonnberger M, Buckwar E, Ruiz-Navarro F, Heil K, Glöckel M, Oberndorfer J, Spiegl-Kreinecker S, Aufschnaiter-Hiessböck K, Weis S, Leibetseder A, Thomae W, Hauser T, Auer C, Katletz S, Gruber A, Gmeiner M. Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma. Sci Rep. 2023 Jun 11;13(1):9494. doi: 10.1038/s41598-023-36298-8. PMID: 37302994.
  • glioma_radiomics.txt
  • Last modified: 2024/06/07 02:53
  • by 127.0.0.1