Gallic acid
The bioactive extract of green tea, theabrownin (TB), is known to exhibit pro-apoptotic and antitumor effects on non-small cell lung cancer (NSCLC). Gallic acid (GA) is a crucial component of TB; however, its mechanism of action in NSCLC has been rarely studied. To date, little attention has been paid to the anti-NSCLC activity of GA. Therefore, the present study investigated the effects of GA in vivo and in vitro. Cell Counting Kit (CCK)-8 assay, DAPI staining and flow cytometry, wound-healing assay and western blotting were used to assess cell viability, apoptosis, migration and protein expression, respectively. In addition, a xenograft model was generated, and TUNEL assay and immunohistochemistry analysis were performed. The CCK-8 data showed that the viability of H1299 cells was significantly inhibited by GA in a dose- and time-dependent manner. DAPI staining, Annexin-V/PI staining and wound-healing data showed that GA exerted pro-apoptotic and anti-migratory effects on H1299 cells in a dose-dependent manner. Furthermore, the results of western blotting showed that GA significantly upregulated the levels of pro-apoptotic proteins [cleaved (c-)PARP, c-caspase8, c-caspase-9 and the ratio of γ-H2A.X/H2A.X]. In vivo data confirmed the antitumor effect of GA through apoptosis induction in an autophagy-dependent manner. In conclusion, the present study confirmed the anti-proliferative, pro-apoptotic and anti-migratory effects of GA against NSCLC in vitro and in vivo, providing considerable evidence for its potential as a novel candidate for the treatment of NSCLC 1).
coordination polymer copper-gallic acid (Cu-GA) nanorods with multi-enzyme activity is successfully prepared for efficient wound treatment of bacterial infection, which can effectively promote wound healing. Cu-GA can be efficiently prepared by a simple solution method and had good physiological stability. Interestingly, Cu-GA shows enhanced multienzyme activity (peroxidase, glutathione peroxidase, and superoxide dismutase), which can produce a large number of reactive oxygen species (ROS) under acidic conditions while scavenging ROS under neutral conditions. In acidic environment, Cu-GA possesses POD (peroxidase)-like and glutathione peroxidase (GSH-Px)-like catalytic activities that is capable of killing bacteria; but in neutral environment, Cu-GA exhibits superoxide dismutase (SOD)-like catalytic activity that can scavenge ROS and promote wound healing. In vivo studies show that Cu-GA can promote wound infection healing and have good biosafety. Cu-GA contributes to the healing of infected wounds by inhibiting bacterial growth, scavenging reactive oxygen species, and promoting angiogenesis. STATEMENT OF SIGNIFICANCE: Cu-GA-coordinated polymer nanozymes with multienzyme activity were successfully prepared for efficient wound treatment of bacterial infection, which could effectively promote wound healing. Interestingly, Cu-GA exhibited enhanced multienzyme activity (peroxidase, glutathione peroxidase, and superoxide dismutase), which could produce a large number of reactive oxygen species (ROS) under acidic conditions and scavenge ROS under neutral conditions. In vitro and in vivo studies demonstrated that Cu-GA was capable of killing bacteria, controlling inflammation, and promoting angiogenesis 2).