GABRA1

Accumulating evidence demonstrates that certain microRNAs play critical roles in epileptogenesis. Previous studies found microRNA (miR)-129-2-3p was induced in patients with refractory temporal lobe epilepsy (TLE).

By bioinformatics, Wang et al. predicted miR-129-2-3p may target the gene GABRA1 encoding the GABA type A receptor subunit alpha 1. Luciferase assay was used to investigate the regulation of miR-129-2-3p on GABRA1 3'UTR. The dynamic expression of miR-129-2-3p and GABRA1 mRNA and protein levels were measured in primary hippocampal neurons and a rat kainic acid (KA)-induced seizure model by quantitative reverse transcription-polymerase chain reaction (qPCR), Western blotting, and immunostaining. MiR-129-2-3p agomir and antagomir were utilized to explore their role in determining GABRA1 expression. The effects of targeting miR-129-2-3p and GABRA1 on epilepsy were assessed by electroencephalography (EEG) and immunostaining.

Luciferase assay, qPCR, and Western blot results suggested GABRA1 as a direct target of miR-129-2-3p. MiR-129-2-3p level was significantly upregulated, whereas GABRA1 expression downregulated in KA-treated rat primary hippocampal neurons and KA-induced seizure model. In vivo knockdown of miR-129-2-3p by antagomir alleviated the seizure-like EEG findings in accordance with the upregulation of GABRA1. Furthermore, the seizure-suppressing effect of the antagomir was partly GABRA1 dependent.

The results suggested GABRA1 as a target of miR-129-2-3p in rat primary hippocampal neurons and a rat kainic acid (KA) seizure model. Silencing of miR-129-2-3p exerted a seizure-suppressing effect in rats. MiR-129-2-3p/GABRA1 pathway may represent a potential target for the prevention and treatment of refractory epilepsy 1).


Wang et al. validated that miR-139-5p affected glioma malignant biological behavior via targeting gamma-aminobutyric acid A receptor alpha 1(GABRA1) through rescue experiments. Low miR-139-5p expression was correlated with survival probability and World Health Organization (WHO) grade. MiR-139-5p overexpression inhibited cell proliferation, migration, and invasion of glioma in vitro. GABRA1 was identified as a functional downstream target of miR-139-5p. Decreased GABRA1 expression was related to similar biological roles as miR-139-5p overexpression while upregulation of GABRA1 effectively reversed the inhibition effects of miR-139-5p. These results demonstrate a novel axis for miR-139-5p/GABRA1 in glioma progression and provide potential prognostic predictors and therapeutic target for glioma patients 2).


1)
Wang GY, Luan ZL, Che NW, Yan DB, Sun XW, Zhang C, Yin J. Inhibition of microRNA-129-2-3p protects against refractory temporal lobe epilepsy by regulating GABRA1. Brain Behav. 2021 May 24:e02195. doi: 10.1002/brb3.2195. Epub ahead of print. PMID: 34029007.
2)
Wang L, Liu Y, Yu Z, Gong J, Deng Z, Ren N, Zhong Z, Cai H, Tang Z, Cheng H, Chen S, He Z. Mir-139-5p inhibits glioma cell proliferation and progression by targeting GABRA1. J Transl Med. 2021 May 17;19(1):213. doi: 10.1186/s12967-021-02880-9. PMID: 34001135; PMCID: PMC8130534.
  • gabra1.txt
  • Last modified: 2024/06/07 02:52
  • by 127.0.0.1