blood-spinal_cord_barrier_disruption

Results suggest that traumatic spinal cord injury mainly triggers innate inflammatory responses that resolves over time, although with some degree of non-resolving inflammation, particularly in CSF. Results cannot confirm blood-spinal cord barrier disruption in all traumatic spinal cord injury patients 1).


2: Zhou G, Wang Z, Han S, Chen X, Li Z, Hu X, Li Y, Gao J. Multifaceted Roles of cAMP Signaling in the Repair Process of Spinal Cord Injury and Related Combination Treatments. Front Mol Neurosci. 2022 Feb 23;15:808510. doi: 10.3389/fnmol.2022.808510. PMID: 35283731; PMCID: PMC8904388.

3: Kim Y, Roh EJ, Joshi HP, Shin HE, Choi H, Kwon SY, Sohn S, Han I. Bazedoxifene, a Selective Estrogen Receptor Modulator, Promotes Functional Recovery in a Spinal Cord Injury Rat Model. Int J Mol Sci. 2021 Oct 12;22(20):11012. doi: 10.3390/ijms222011012. PMID: 34681670; PMCID: PMC8537911.

4: Feng Z, Min L, Liang L, Chen B, Chen H, Zhou Y, Deng W, Liu H, Hou J. Neutrophil Extracellular Traps Exacerbate Secondary Injury <i>via</i> Promoting Neuroinflammation and Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury. Front Immunol. 2021 Aug 11;12:698249. doi: 10.3389/fimmu.2021.698249. PMID: 34456910; PMCID: PMC8385494.

5: Gao J, Khang M, Liao Z, Detloff M, Lee JS. Therapeutic targets and nanomaterial-based therapies for mitigation of secondary injury after spinal cord injury. Nanomedicine (Lond). 2021 Sep;16(22):2013-2028. doi: 10.2217/nnm-2021-0113. Epub 2021 Aug 17. PMID: 34402308; PMCID: PMC8411395.

6: Zhang L, López-Picón FR, Jia Y, Chen Y, Li J, Han C, Zhuang X, Xia H. Longitudinal [18F]FDG and [13N]NH3 PET/CT imaging of brain and spinal cord in a canine hemisection spinal cord injury model. Neuroimage Clin. 2021;31:102692. doi: 10.1016/j.nicl.2021.102692. Epub 2021 May 4. PMID: 33992987; PMCID: PMC8134064.

7: Chio JCT, Xu KJ, Popovich P, David S, Fehlings MG. Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Exp Neurol. 2021 Jul;341:113704. doi: 10.1016/j.expneurol.2021.113704. Epub 2021 Mar 19. PMID: 33745920.

8: Blume C, Geiger MF, Müller M, Clusmann H, Mainz V, Kalder J, Brandenburg LO, Mueller CA. Decreased angiogenesis as a possible pathomechanism in cervical degenerative myelopathy. Sci Rep. 2021 Jan 28;11(1):2497. doi: 10.1038/s41598-021-81766-8. PMID: 33510227; PMCID: PMC7843718.

9: Zheng G, Zheng F, Luo Z, Ma H, Zheng D, Xiang G, Xu C, Zhou Y, Wu Y, Tian N, Wu Y, Zhang T, Ni W, Wang S, Xu H, Zhang X. CO-Releasing Molecule (CORM)-3 Ameliorates Spinal Cord-Blood Barrier Disruption Following Injury to the Spinal Cord. Front Pharmacol. 2020 Jun 4;11:761. doi: 10.3389/fphar.2020.00761. PMID: 32581781; PMCID: PMC7287126.

10: Wang D, Wang K, Liu Z, Wang Z, Wu H. Valproic acid-labeled chitosan nanoparticles promote recovery of neuronal injury after spinal cord injury. Aging (Albany NY). 2020 May 28;12(10):8953-8967. doi: 10.18632/aging.103125. Epub 2020 May 28. PMID: 32463791; PMCID: PMC7288920.

11: Joshi HP, Kumar H, Choi UY, Lim YC, Choi H, Kim J, Kyung JW, Sohn S, Kim KT, Kim JK, Han IB. CORM-2-Solid Lipid Nanoparticles Maintain Integrity of Blood- Spinal Cord Barrier After Spinal Cord Injury in Rats. Mol Neurobiol. 2020 Jun;57(6):2671-2689. doi: 10.1007/s12035-020-01914-5. Epub 2020 Apr 16. Erratum in: Mol Neurobiol. 2021 Apr;58(4):1873. PMID: 32300934.

12: Blume C, Geiger MF, Brandenburg LO, Müller M, Mainz V, Kalder J, Albanna W, Clusmann H, Mueller CA. Patients with degenerative cervical myelopathy have signs of blood spinal cord barrier disruption, and its magnitude correlates with myelopathy severity: a prospective comparative cohort study. Eur Spine J. 2020 May;29(5):986-993. doi: 10.1007/s00586-020-06298-7. Epub 2020 Jan 25. PMID: 31982957.

13: Kumar H, Lim CS, Choi H, Joshi HP, Kim KT, Kim YH, Park CK, Kim HM, Han IB. Elevated TRPV4 Levels Contribute to Endothelial Damage and Scarring in Experimental Spinal Cord Injury. J Neurosci. 2020 Feb 26;40(9):1943-1955. doi: 10.1523/JNEUROSCI.2035-19.2020. Epub 2020 Jan 23. PMID: 31974206; PMCID: PMC7046444.

14: Ji L, Ma X, Ji W, Huang S, Feng M, Li J, Heng L, Huang Y, Lan B. Safe range of shortening the middle thoracic spine, an experimental study in canine. Eur Spine J. 2020 Mar;29(3):616-627. doi: 10.1007/s00586-019-06268-8. Epub 2020 Jan 1. PMID: 31894401.

15: Zhang L, Zhuang X, Chen Y, Xia H. Intravenous transplantation of olfactory bulb ensheathing cells for a spinal cord hemisection injury rat model. Cell Transplant. 2019 Dec;28(12):1585-1602. doi: 10.1177/0963689719883842. Epub 2019 Oct 30. PMID: 31665910; PMCID: PMC6923555.

16: Montero AS, Bielle F, Goldwirt L, Lalot A, Bouchoux G, Canney M, Belin F, Beccaria K, Pradat PF, Salachas F, Boillée S, Lobsiger C, Lafon C, Chapelon JY, Carpentier A. Ultrasound-Induced Blood-Spinal Cord Barrier Opening in Rabbits. Ultrasound Med Biol. 2019 Sep;45(9):2417-2426. doi: 10.1016/j.ultrasmedbio.2019.05.022. Epub 2019 Jun 24. PMID: 31248640.

17: Liu Z, Zhang H, Xia H, Wang B, Zhang R, Zeng Q, Guo L, Shen K, Wang B, Zhong Y, Li Z, Sun G. CD8 T cell-derived perforin aggravates secondary spinal cord injury through destroying the blood-spinal cord barrier. Biochem Biophys Res Commun. 2019 Apr 30;512(2):367-372. doi: 10.1016/j.bbrc.2019.03.002. Epub 2019 Mar 18. PMID: 30894275.

18: Liang CL, Chen HJ, Liliang PC, Wang HK, Tsai YD, Cho CL, Lu K, Wang KW. Simvastatin and Simvastatin-Ezetimibe Improve the Neurological Function and Attenuate the Endothelial Inflammatory Response after Spinal Cord Injury in Rat. Ann Clin Lab Sci. 2019 Jan;49(1):105-111. PMID: 30814085.

19: Albayar AA, Roche A, Swiatkowski P, Antar S, Ouda N, Emara E, Smith DH, Ozturk AK, Awad BI. Biomarkers in Spinal Cord Injury: Prognostic Insights and Future Potentials. Front Neurol. 2019 Jan 29;10:27. doi: 10.3389/fneur.2019.00027. PMID: 30761068; PMCID: PMC6361789.

20: Zheng B, Zhou Y, Zhang H, Yang G, Hong Z, Han D, Wang Q, He Z, Liu Y, Wu F, Zhang X, Tong S, Xu H, Xiao J. Dl-3-n-butylphthalide prevents the disruption of blood-spinal cord barrier via inhibiting endoplasmic reticulum stress following spinal cord injury. Int J Biol Sci. 2017 Nov 27;13(12):1520-1531. doi: 10.7150/ijbs.21107. PMID: 29230100; PMCID: PMC5723918.

21: He Z, Zou S, Yin J, Gao Z, Liu Y, Wu Y, He H, Zhou Y, Wang Q, Li J, Wu F, Xu HZ, Jia X, Xiao J. Inhibition of Endoplasmic Reticulum Stress Preserves the Integrity of Blood-Spinal Cord Barrier in Diabetic Rats Subjected to Spinal Cord Injury. Sci Rep. 2017 Aug 9;7(1):7661. doi: 10.1038/s41598-017-08052-4. Erratum in: Sci Rep. 2022 Feb 10;12(1):2629. PMID: 28794417; PMCID: PMC5550423.

22: Kumar H, Jo MJ, Choi H, Muttigi MS, Shon S, Kim BJ, Lee SH, Han IB. Matrix Metalloproteinase-8 Inhibition Prevents Disruption of Blood-Spinal Cord Barrier and Attenuates Inflammation in Rat Model of Spinal Cord Injury. Mol Neurobiol. 2018 Mar;55(3):2577-2590. doi: 10.1007/s12035-017-0509-3. Epub 2017 Apr 18. PMID: 28421532.

23: Zhou Y, Wu Y, Liu Y, He Z, Zou S, Wang Q, Li J, Zheng Z, Chen J, Wu F, Gong F, Zhang H, Xu H, Xiao J. The cross-talk between autophagy and endoplasmic reticulum stress in blood-spinal cord barrier disruption after spinal cord injury. Oncotarget. 2017 Jan 3;8(1):1688-1702. doi: 10.18632/oncotarget.13777. PMID: 27926492; PMCID: PMC5352089.

24: Kumar H, Ropper AE, Lee SH, Han I. Propitious Therapeutic Modulators to Prevent Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury. Mol Neurobiol. 2017 Jul;54(5):3578-3590. doi: 10.1007/s12035-016-9910-6. Epub 2016 May 18. PMID: 27194298.

25: Zhou Y, Ye L, Zheng B, Zhu S, Shi H, Zhang H, Wang Z, Wei X, Chen D, Li X, Xu H, Xiao J. Phenylbutyrate prevents disruption of blood-spinal cord barrier by inhibiting endoplasmic reticulum stress after spinal cord injury. Am J Transl Res. 2016 Apr 15;8(4):1864-75. PMID: 27186310; PMCID: PMC4859915.

26: Zheng B, Ye L, Zhou Y, Zhu S, Wang Q, Shi H, Chen D, Wei X, Wang Z, Li X, Xiao J, Xu H, Zhang H. Epidermal growth factor attenuates blood-spinal cord barrier disruption via PI3K/Akt/Rac1 pathway after acute spinal cord injury. J Cell Mol Med. 2016 Jun;20(6):1062-75. doi: 10.1111/jcmm.12761. Epub 2016 Jan 15. PMID: 26769343; PMCID: PMC4882989.

27: Zhou Y, Zhang H, Zheng B, Ye L, Zhu S, Johnson NR, Wang Z, Wei X, Chen D, Cao G, Fu X, Li X, Xu HZ, Xiao J. Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury. Int J Biol Sci. 2016 Jan 1;12(1):87-99. doi: 10.7150/ijbs.13229. PMID: 26722220; PMCID: PMC4679401.

28: Smith JR, Galie PA, Slochower DR, Weisshaar CL, Janmey PA, Winkelstein BA. Salmon-derived thrombin inhibits development of chronic pain through an endothelial barrier protective mechanism dependent on APC. Biomaterials. 2016 Feb;80:96-105. doi: 10.1016/j.biomaterials.2015.11.062. Epub 2015 Dec 2. PMID: 26708087; PMCID: PMC4706481.

29: Hergenroeder GW, Moore AN, Schmitt KM, Redell JB, Dash PK. Identification of autoantibodies to glial fibrillary acidic protein in spinal cord injury patients. Neuroreport. 2016 Jan 20;27(2):90-3. doi: 10.1097/WNR.0000000000000502. PMID: 26629661; PMCID: PMC4689639.

30: Wu L, Yang T, Yang C, Yao N, Wang H, Fang J, Xu Y. Delayed neurological deterioration after surgery for intraspinal meningiomas: Ischemia-reperfusion injury in a rat model. Oncol Lett. 2015 Oct;10(4):2087-2094. doi: 10.3892/ol.2015.3626. Epub 2015 Aug 19. PMID: 26622801; PMCID: PMC4579926.

31: Wong CS, Fehlings MG, Sahgal A. Pathobiology of radiation myelopathy and strategies to mitigate injury. Spinal Cord. 2015 Aug;53(8):574-80. doi: 10.1038/sc.2015.43. Epub 2015 Mar 24. PMID: 25800695.

32: Hou Y, Heon Ryu C, Jun JA, Kim SM, Jeong CH, Jeun SS. Interferon β-secreting mesenchymal stem cells combined with minocycline attenuate experimental autoimmune encephalomyelitis. J Neuroimmunol. 2014 Sep 15;274(1-2):20-7. doi: 10.1016/j.jneuroim.2014.06.001. Epub 2014 Jun 20. PMID: 25005115.

33: Soubeyrand M, Badner A, Vawda R, Chung YS, Fehlings MG. Very high resolution ultrasound imaging for real-time quantitative visualization of vascular disruption after spinal cord injury. J Neurotrauma. 2014 Nov 1;31(21):1767-75. doi: 10.1089/neu.2013.3319. Epub 2014 Sep 4. PMID: 24831774; PMCID: PMC4186763.

34: Zhang H, Chang M, Hansen CN, Basso DM, Noble-Haeusslein LJ. Role of matrix metalloproteinases and therapeutic benefits of their inhibition in spinal cord injury. Neurotherapeutics. 2011 Apr;8(2):206-20. doi: 10.1007/s13311-011-0038-0. PMID: 21455784; PMCID: PMC3077748.

35: Mao L, Wang H, Qiao L, Wang X. Disruption of Nrf2 enhances the upregulation of nuclear factor-kappaB activity, tumor necrosis factor-α, and matrix metalloproteinase-9 after spinal cord injury in mice. Mediators Inflamm. 2010;2010:238321. doi: 10.1155/2010/238321. Epub 2010 Aug 24. PMID: 20862369; PMCID: PMC2938451.

36: Zhong Z, Deane R, Ali Z, Parisi M, Shapovalov Y, O'Banion MK, Stojanovic K, Sagare A, Boillee S, Cleveland DW, Zlokovic BV. ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci. 2008 Apr;11(4):420-2. doi: 10.1038/nn2073. Epub 2008 Mar 16. PMID: 18344992; PMCID: PMC2895310.

37: Gordh T, Sharma HS. Chronic spinal nerve ligation induces microvascular permeability disturbances, astrocytic reaction, and structural changes in the rat spinal cord. Acta Neurochir Suppl. 2006;96:335-40. doi: 10.1007/3-211-30714-1_70. PMID: 16671481.

38: Pearse DD, Chatzipanteli K, Marcillo AE, Bunge MB, Dietrich WD. Comparison of iNOS inhibition by antisense and pharmacological inhibitors after spinal cord injury. J Neuropathol Exp Neurol. 2003 Nov;62(11):1096-107. doi: 10.1093/jnen/62.11.1096. PMID: 14656068.

39: Kaptanoglu E, Beskonakli E, Solaroglu I, Kilinc A, Taskin Y. Magnesium sulfate treatment in experimental spinal cord injury: emphasis on vascular changes and early clinical results. Neurosurg Rev. 2003 Oct;26(4):283-7. doi: 10.1007/s10143-003-0272-y. Epub 2003 May 29. PMID: 12783273.

40: Noble LJ, Donovan F, Igarashi T, Goussev S, Werb Z. Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J Neurosci. 2002 Sep 1;22(17):7526-35. doi: 10.1523/JNEUROSCI.22-17-07526.2002. PMID: 12196576; PMCID: PMC2792199.

41: Noble LJ, Mautes AE, Hall JJ. Characterization of the microvascular glycocalyx in normal and injured spinal cord in the rat. J Comp Neurol. 1996 Dec 23;376(4):542-56. doi: 10.1002/(SICI)1096-9861(19961223)376:4<542::AID- CNE4>3.0.CO;2-1. PMID: 8978469.

42: Wang R, Ehara K, Tamaki N. Spinal cord edema following freezing injury in the rat: relationship between tissue water content and spinal cord blood flow. Surg Neurol. 1993 May;39(5):348-54. doi: 10.1016/0090-3019(93)90198-a. PMID: 8493592.

43: Arbit E, Galicich W, Galicich JH, Lau N. An animal model of epidural compression of the spinal cord. Neurosurgery. 1989 Jun;24(6):860-3. doi: 10.1227/00006123-198906000-00011. PMID: 2747860.


1)
Wichmann TO, Kasch H, Dyrskog S, Høy K, Møller BK, Krog J, Hviid CVB, Hoffmann HJ, Rasmussen MM. The inflammatory response and blood-spinal cord barrier integrity in traumatic spinal cord injury: a prospective pilot study. Acta Neurochir (Wien). 2022 Oct 3. doi: 10.1007/s00701-022-05369-6. Epub ahead of print. PMID: 36190569.
  • blood-spinal_cord_barrier_disruption.txt
  • Last modified: 2025/05/13 02:16
  • by 127.0.0.1