Desktop access to electronic full-text literature was rated one of the most desirable services in a client survey conducted by the University of Washington Libraries. The University of Washington Health Sciences Libraries (UW HSL) conducted a ten-month pilot test from August 1996 to May 1997 to determine the feasibility of delivering electronic journal articles via the Internet to remote faculty. Articles were scanned into Adobe Acrobat Portable Document Format (PDF) files and delivered to individuals using Multipurpose Internet Mail Extensions (MIME) standard e-mail attachments and the Web. Participants retrieved scanned articles and used the Adobe Acrobat Reader software to view and print files. The pilot test required a special programming effort to automate the client notification and file deletion processes. Test participants were satisfied with the pilot test despite some technical difficulties. Desktop delivery is now offered as a routine delivery method from the UW HSL 1).
The goal of the project was to create a method by which an in-house digital teaching file could be constructed that was simple, inexpensive, independent of hypertext markup language (HTML) restrictions, and appears identical on multiple platforms. To accomplish this, Microsoft PowerPoint and Adobe Acrobat were used in succession to assemble digital teaching files in the Acrobat portable document file format. They were then verified to appear identically on computers running Windows, Macintosh Operating Systems (OS), and the Silicon Graphics Unix-based OS as either a free-standing file using Acrobat Reader software or from within a browser window using the Acrobat browser plug-in. This latter display method yields a file viewed through a browser window, yet remains independent of underlying HTML restrictions, which may confer an advantage over simple HTML teaching file construction. Thus, a hybrid of HTML-distributed Adobe Acrobat generated WWW documents may be a viable alternative for digital teaching file construction and distribution 2).
The course of the internal carotid artery (ICA) and its segment classifications were reviewed by means of a new and freely available 3D interactive model of the artery and the skull base, based on human neuroimages, that can be freely downloaded at the Public Repository of the University of Barcelona ( http://diposit.ub.edu/dspace/handle/2445/112442 ) and runs under Adobe Acrobat Reader in Mac and Windows computers and Windows 10 tablets. The 3D-PDF allows zoom, rotation, selective visualization of structures, and a predefined sequence view. Illustrative images of the different classifications were obtained 3).