2017

Gangadharaswamy et al. present their experience in the surgical management of 3 cases with SAVMs using proximal feeding artery temporary occlusion followed by total surgical excision. The clinical presentations and radiological features of these cases are discussed in the article. Intraoperative blood loss was less than 150ml in all patients. Postoperative period was uneventful with no morbidity or mortality.

Intraoperative bleeding during surgical excision of scalp AVMs can be troublesome and challenging. To combat this, the authors advocate proximal feeding artery temporary clipping prior to surgical excision of the lesion. The external carotid artery was temporarily clipped in one case and superficial temporal artery in two patients.

Although most SAVMs can be operated by traditional method of excision, use of temporary clipping of feeding arteries (like Superficial temporal artery[STA], External carotid artery[ECA]) enables total excision of giant SAVMs with minimal blood loss for a definitive cure. This novel technique obviates the need for preoperative embolization 1).

2013

Chowdhury et al., reported the experience of the surgical management of such lesions with a short review of the literature.

In this prospective study, 11 patients with scalp AVM and SVM, who underwent surgical excision of lesion in our hospital from 2006 to 2012, were included. All suspected high-flow AVM were investigated with the selective internal and external carotid digital subtraction angiogram (DSA) ± computed tomography (CT) scan of brain with CT angiogram or magnetic resonance imaging (MRI) of brain with MR angiogram, and all suspected low-flow vascular malformation (VM) was investigated with MRI of brain + MR angiogram. Eight were high-flow and three were low-flow VM.

All lesions were successfully excised. Scalp cosmetic aspects were acceptable in all cases. There was no major post-operative complication or recurrence till last follow-up.

With preoperative appropriate surgical planning, scalp AVM and SVM can be excised without major complication 2).

2004

Eight patients with scalp vascular malformations admitted between 1997 and 2002.

All the patients were investigated with selective internal and external carotid angiography. Depending upon the origin of feeding arteries, the scalp vascular malformations were classified into two categories: Group I: the primary scalp arteriovenous malformations and Group II: secondary venous dilatations. Six patients belonged to Group I and two patients were in Group II.

Five patients belonging to Group I underwent successful excision of the arteriovenous malformation. There was no recurrence in this group. Of the two patients in Group II, one patient who had scalp vascular dilatation simulating a primary scalp vascular malformation underwent excision of the lesion. This patient developed severe postoperative brain edema and died.

Primary scalp vascular malformation can be excised safely. However, excision of secondary scalp venous dilatation without treatment of the intracranial component can be dangerous 3).

2002

Muthukumar et al. treated 11 patients with cirsoid aneurysms surgically. All except one patient were males who were in the second and third decades of life. History of trauma was present in 6 patients. In one patient, the lesion had been present since birth. Occipital and frontal regions were the sites commonly involved. Superficial temporal, occipital and posterior auricular arteries were the most frequent feeding arteries. The size ranged from 3 cms to 12 cms. Following investigations were done: CT, MRI, MRA, angiography and Doppler studies.

Excision of the lesion was done in 8 patients and en bloc resection of the lesion with the scalp with reconstruction was done in the remaining three. One among the three patients who underwent en bloc resection had undergone prior surgery. None of the patients underwent preoperative endovascular treatment. One patient had undergone intralesional injection of sclerosing agents twice. Superficial scalp necrosis occurred in two patients but was treated successfully. All the patients except one had good cosmetic results and there was no recurrence during an average follow up of 18 months 4).

1998

A retrospective review of 81 patients with extracranial arteriovenous malformation of the head and neck who presented to the Vascular Anomalies Program in Boston over the last 20 years. This study focused on the natural history and effectiveness of treatment. The male to female ratio was 1:1.5. Arteriovenous malformations occur in anatomic patterns. Sixty-nine percent occurred in the midface, 14 percent in the upper third of the face, and 17 percent in the lower third. The most common sites were cheek (31 percent), ear (16 percent), nose (11 percent), and forehead (10 percent). A vascular anomaly was apparent at birth in 59 percent of patients (82 percent in men, 44 percent in women). Ten percent of patients noted onset in childhood, 10 percent in adolescence, and 21 percent in adulthood. Eight patients first noted the malformation at puberty, and six others experienced exacerbation during puberty. Fifteen women noted appearance or expansion of the malformation during pregnancy. Bony involvement occurred in 22 patients, most commonly in the maxilla and mandible. In seven patients, the bone was the primary site; in 15 other patients, the bone was involved secondarily. Arteriovenous malformations were categorized according to Schobinger clinical staging: 27 percent in stage I (quiescence), 38 percent in stage II (expansion), and 38 percent in stage III (destruction). There was a single patient with stage IV malformation (decompensation). Stage I lesions remained stable for long periods. Expansion (stage II) was usually followed by pain, bleeding, and ulceration (stage III). Once present, these symptoms and signs inevitably progressed until the malformation was resected. Resection margins were best determined intraoperatively by the bleeding pattern of the incised tissue and by Doppler. Subtotal excision or proximal ligation frequently resulted in rapid progression of the arteriovenous malformation. The overall cure rate was 60 percent, defined as radiographic absence of arteriovenous malformation. Cure rate for small malformations was 69 percent with excision only and 62 percent for extensive malformations with combined embolization-resection. The cure rate was 75 percent for stage I, 67 percent for stage II, and 48 percent for stage III malformations. Outcome was not affected significantly by age at treatment, sex, Schobinger stage, or treatment method. Mean follow-up was 4.6 years 5).

1995

Twenty-four patients with cirsoid aneurysms of the scalp. For nine patients (38%), the lesions were related to trauma. Each of the patients presented with a pulsatile scalp swelling with a bruit. No focal neurological deficits were noted in any of the patients. Scalp malformations in all patients were confirmed by selective internal and external carotid angiography, with no intracerebral component revealed in any of the patients. Twenty-one patients had the lesions surgically excised, with good results. The remaining three refused surgical intervention. Meticulous surgical technique, which includes removal of the pericranial component of the malformation, was paramount 6).

1989

Ten patients with scalp arteriovenous fistulas associated with a large varix (cirsoid aneurysms) were treated with a combination of interventional neuroradiologic procedures. These procedures included transarterial embolization, transarterial embolization followed by surgical excision, and two new methods of treatment of cirsoid aneurysms: transvenous embolization and direct puncture of the fistula for embolization. The embolic materials included liquid adhesive agents, particulate agents, detachable balloons, and wire coils. The embolization was performed to lodge the embolic agents in the fistula or proximal draining vein, not just the feeding vessels. Surgery was performed in two cases to remove a small residual nidus of fistula that could not be completely treated with intravascular embolization. With the use of these forms of treatment, cures were obtained in seven patients, and clinical and angiographic improvement was achieved in three patients. No major morbidity, blood loss, or mortality occurred during the treatment of these patients. The follow-up period ranged from 1 month to 8 years 7).


1)
Gangadharaswamy SB, Maulyavantham Nagaraj N, Pai BS. Surgical management of scalp arteriovenous malformations using a novel surgical technique-Case series. Int J Surg Case Rep. 2017 Jul 8;37:250-253. doi: 10.1016/j.ijscr.2017.06.057. [Epub ahead of print] PubMed PMID: 28715722.
2)
Chowdhury FH, Haque MR, Kawsar KA, Sarker MH, Momtazul Haque AF. Surgical management of scalp arterio-venous malformation and scalp venous malformation: An experience of eleven cases. Indian J Plast Surg. 2013 Jan;46(1):98-107. doi: 10.4103/0970-0358.113723. PubMed PMID: 23960313; PubMed Central PMCID: PMC3745130.
3)
Shenoy SN, Raja A. Scalp arteriovenous malformations. Neurol India. 2004 Dec;52(4):478-81. PubMed PMID: 15626838.
4)
Muthukumar N, Rajagopal V, Manoharan AV, Durairaj N. Surgical management of cirsoid aneurysms. Acta Neurochir (Wien). 2002 Apr;144(4):349-56. PubMed PMID: 12021881.
5)
Kohout MP, Hansen M, Pribaz JJ, Mulliken JB. Arteriovenous malformations of the head and neck: natural history and management. Plast Reconstr Surg. 1998 Sep;102(3):643-54. PubMed PMID: 9727427.
6)
Fisher-Jeffes ND, Domingo Z, Madden M, de Villiers JC. Arteriovenous malformations of the scalp. Neurosurgery. 1995 Apr;36(4):656-60; discussion 660. PubMed PMID: 7596493.
7)
Barnwell SL, Halbach VV, Dowd CF, Higashida RT, Hieshima GB. Endovascular treatment of scalp arteriovenous fistulas associated with a large varix. Radiology. 1989 Nov;173(2):533-9. PubMed PMID: 2798886.
  • scalp_cirsoid_aneurysm_case_series.txt
  • Last modified: 2024/06/07 02:52
  • by 127.0.0.1