exoskeleton

Exoskeleton

see also Lokomat


The Hybrid Assistive Limb (HAL) was developed as an exoskeleton robot that supports gait training. The purpose of a study of Setoguchi et al. was to assess the usefulness of training using the HAL after total hip arthroplasty (THA). They targeted 16 consecutive patients who underwent THA via the posterior approach. They randomized patients to the HAL group (8 hips), in which the HAL was used as part of physical therapy, or the control group (8 hips), in which only typical physical therapy was performed. Gait analysis was performed before and after surgery, and comparisons were made between the two groups. They evaluated the single support time (%), double support time (%), cadence (steps/min), velocity (cm/s), stride length (cm), and anteroposterior and lateral variability, and assessed the hip and knee joint range of motion in the sagittal plane. The results showed improvements in the hip extension angle and other gait parameters in the HAL group. Among gait-related problems after THA, a decreased peak hip extension angle is reported to be a significant factor that affects gait disability. This study revealed that HAL usage after THA seems to be a useful method to obtain sufficient extension angle 1).


1: Setoguchi D, Kinoshita K, Kamada S, Sakamoto T, Kise N, Kotani N, Goto K, Shiota E, Inoue T, Yamamoto T. Hybrid Assistive Limb improves restricted hip extension after total hip arthroplasty. Assist Technol. 2020 Jan 7. doi: 10.1080/10400435.2020.1712498. [Epub ahead of print] PubMed PMID: 31909703.

2: van Silfhout L, Váňa Z, Pĕtioký J, Edwards MJR, Bartels RHMA, van de Meent H, Hosman AJF. Highest ambulatory speed using Lokomat gait training for individuals with a motor-complete spinal cord injury: a clinical pilot study. Acta Neurochir (Wien). 2019 Dec 24. doi: 10.1007/s00701-019-04189-5. [Epub ahead of print] PubMed PMID: 31873795.

3: Tsurushima H, Mizukami M, Yoshikawa K, Ueno T, Hada Y, Gosho M, Kohno Y, Hashimoto K, Iizumi Y, Kikuchi T, Matsumura A; Hit2016 Study Group. Effectiveness of a Walking Program Involving the Hybrid Assistive Limb Robotic Exoskeleton Suit for Improving Walking Ability in Stroke Patients: Protocol for a Randomized Controlled Trial. JMIR Res Protoc. 2019 Oct 11;8(10):e14001. doi: 10.2196/14001. PubMed PMID: 31605515; PubMed Central PMCID: PMC6913690.

4: Kotani N, Morishita T, Saita K, Kamada S, Maeyama A, Abe H, Yamamoto T, Shiota E, Inoue T. Feasibility of supplemental robot-assisted knee flexion exercise following total knee arthroplasty. J Back Musculoskelet Rehabil. 2019 Sep 10. doi: 10.3233/BMR-181482. [Epub ahead of print] PubMed PMID: 31561326.

5: Ueno T, Watanabe H, Kawamoto H, Shimizu Y, Endo A, Shimizu T, Ishikawa K, Kadone H, Ohto T, Kamada H, Marushima A, Hada Y, Muroi A, Sankai Y, Ishikawa E, Matsumura A, Yamazaki M. Feasibility and safety of Robot Suit HAL treatment for adolescents and adults with cerebral palsy. J Clin Neurosci. 2019 Oct;68:101-104. doi: 10.1016/j.jocn.2019.07.026. Epub 2019 Jul 20. PubMed PMID: 31337581.

6: Iwamoto Y, Imura T, Suzukawa T, Fukuyama H, Ishii T, Taki S, Imada N, Shibukawa M, Inagawa T, Araki H, Araki O. Combination of Exoskeletal Upper Limb Robot and Occupational Therapy Improve Activities of Daily Living Function in Acute Stroke Patients. J Stroke Cerebrovasc Dis. 2019 Jul;28(7):2018-2025. doi: 10.1016/j.jstrokecerebrovasdis.2019.03.006. Epub 2019 Apr 30. PubMed PMID: 31047819.

7: Hyakutake K, Morishita T, Saita K, Fukuda H, Shiota E, Higaki Y, Inoue T, Uehara Y. Effects of Home-Based Robotic Therapy Involving the Single-Joint Hybrid Assistive Limb Robotic Suit in the Chronic Phase of Stroke: A Pilot Study. Biomed Res Int. 2019 Mar 18;2019:5462694. doi: 10.1155/2019/5462694. eCollection 2019. PubMed PMID: 31011576; PubMed Central PMCID: PMC6442446.

8: Kubota S, Abe T, Kadone H, Shimizu Y, Funayama T, Watanabe H, Marushima A, Koda M, Hada Y, Sankai Y, Yamazaki M. Hybrid assistive limb (HAL) treatment for patients with severe thoracic myelopathy due to ossification of the posterior longitudinal ligament (OPLL) in the postoperative acute/subacute phase: A clinical trial. J Spinal Cord Med. 2019 Jul;42(4):517-525. doi: 10.1080/10790268.2018.1525975. Epub 2018 Oct 18. PubMed PMID: 30335588; PubMed Central PMCID: PMC6718179.

9: Seruya M. The Future of Upper Extremity Spasticity Management. Hand Clin. 2018 Nov;34(4):593-599. doi: 10.1016/j.hcl.2018.07.002. Epub 2018 Aug 20. Review. PubMed PMID: 30286973.

10: Abe H, Morishita T, Samura K, Yagi K, Nonaka M, Inoue T. Potential of Hybrid Assistive Limb Treatment for Ataxic Gait Due to Cerebellar Disorders Including Hemorrhage, Infarction, and Tumor. Acta Neurochir Suppl. 2018;129:135-140. doi: 10.1007/978-3-319-73739-3_20. Review. PubMed PMID: 30171326.

11: Taketomi M, Shimizu Y, Kadone H, Kubota S, Abe T, Marushima A, Ueno T, Endo A, Kawamoto H, Matsumura A, Sankai Y, Hada Y, Yamazaki M. Hybrid Assistive Limb Intervention in a Patient with Late Neurological Deterioration after Thoracic Myelopathy Surgery due to Ossification of the Ligamentum Flavum. Case Rep Orthop. 2018 Feb 8;2018:6171760. doi: 10.1155/2018/6171760. eCollection 2018. PubMed PMID: 29593925; PubMed Central PMCID: PMC5822893.

12: Puentes S, Kadone H, Kubota S, Abe T, Shimizu Y, Marushima A, Sankai Y, Yamazaki M, Suzuki K. Reshaping of Gait Coordination by Robotic Intervention in Myelopathy Patients After Surgery. Front Neurosci. 2018 Mar 2;12:99. doi: 10.3389/fnins.2018.00099. eCollection 2018. PubMed PMID: 29551960; PubMed Central PMCID: PMC5840280.

13: Kubota S, Abe T, Koda M, Kadone H, Shimizu Y, Mataki Y, Noguchi H, Fujii K, Marushima A, Funayama T, Kawamoto H, Hada Y, Sankai Y, Yamazaki M. Application of a newly developed upper limb single-joint hybrid assistive limb for postoperative C5 paralysis: An initial case report indicating its safety and feasibility. J Clin Neurosci. 2018 Apr;50:268-271. doi: 10.1016/j.jocn.2018.01.038. PubMed PMID: 29402566.

14: Saita K, Morishita T, Arima H, Hyakutake K, Ogata T, Yagi K, Shiota E, Inoue T. Biofeedback effect of hybrid assistive limb in stroke rehabilitation: A proof of concept study using functional near infrared spectroscopy. PLoS One. 2018 Jan 16;13(1):e0191361. doi: 10.1371/journal.pone.0191361. eCollection 2018. PubMed PMID: 29338060; PubMed Central PMCID: PMC5770063.

15: Gad P, Gerasimenko Y, Zdunowski S, Turner A, Sayenko D, Lu DC, Edgerton VR. Weight Bearing Over-ground Stepping in an Exoskeleton with Non-invasive Spinal Cord Neuromodulation after Motor Complete Paraplegia. Front Neurosci. 2017 Jun 8;11:333. doi: 10.3389/fnins.2017.00333. eCollection 2017. PubMed PMID: 28642680; PubMed Central PMCID: PMC5462970.

16: Watanabe H, Goto R, Tanaka N, Matsumura A, Yanagi H. Effects of gait training using the Hybrid Assistive Limb® in recovery-phase stroke patients: A 2-month follow-up, randomized, controlled study. NeuroRehabilitation. 2017;40(3):363-367. doi: 10.3233/NRE-161424. PubMed PMID: 28222558.

17: Previtera B, Jovine C, Visocchi M. ReAbility: Complex External Prosthesis Systems to Rehabilitate Movement. Acta Neurochir Suppl. 2017;124:211-215. doi: 10.1007/978-3-319-39546-3_32. PubMed PMID: 28120076.

18: Grimm F, Naros G, Gharabaghi A. Closed-Loop Task Difficulty Adaptation during Virtual Reality Reach-to-Grasp Training Assisted with an Exoskeleton for Stroke Rehabilitation. Front Neurosci. 2016 Nov 15;10:518. eCollection 2016. PubMed PMID: 27895550; PubMed Central PMCID: PMC5108796.

19: Grimm F, Walter A, Spüler M, Naros G, Rosenstiel W, Gharabaghi A. Hybrid Neuroprosthesis for the Upper Limb: Combining Brain-Controlled Neuromuscular Stimulation with a Multi-Joint Arm Exoskeleton. Front Neurosci. 2016 Aug 9;10:367. doi: 10.3389/fnins.2016.00367. eCollection 2016. PubMed PMID: 27555805; PubMed Central PMCID: PMC4977295.

20: Grimm F, Gharabaghi A. Closed-Loop Neuroprosthesis for Reach-to-Grasp Assistance: Combining Adaptive Multi-channel Neuromuscular Stimulation with a Multi-joint Arm Exoskeleton. Front Neurosci. 2016 Jun 23;10:284. doi: 10.3389/fnins.2016.00284. eCollection 2016. PubMed PMID: 27445658; PubMed Central PMCID: PMC4917563.

21: Grimm F, Naros G, Gharabaghi A. Compensation or Restoration: Closed-Loop Feedback of Movement Quality for Assisted Reach-to-Grasp Exercises with a Multi-Joint Arm Exoskeleton. Front Neurosci. 2016 Jun 21;10:280. doi: 10.3389/fnins.2016.00280. eCollection 2016. PubMed PMID: 27445655; PubMed Central PMCID: PMC4914560.

22: Arazpour M, Samadian M, Ebrahimzadeh K, Ahmadi Bani M, Hutchins SW. The influence of orthosis options on walking parameters in spinal cord-injured patients: a literature review. Spinal Cord. 2016 Jun;54(6):412-22. doi: 10.1038/sc.2015.238. Epub 2016 Feb 9. Review. PubMed PMID: 26857271.

23: Fujii K, Abe T, Kubota S, Marushima A, Kawamoto H, Ueno T, Matsushita A, Nakai K, Saotome K, Kadone H, Endo A, Haginoya A, Hada Y, Matsumura A, Sankai Y, Yamazaki M. The voluntary driven exoskeleton Hybrid Assistive Limb (HAL) for postoperative training of thoracic ossification of the posterior longitudinal ligament: a case report. J Spinal Cord Med. 2017 May;40(3):361-367. doi: 10.1080/10790268.2016.1142056. Epub 2016 Feb 9. PubMed PMID: 26856189; PubMed Central PMCID: PMC5472024.

24: Naros G, Geyer M, Koch S, Mayr L, Ellinger T, Grimm F, Gharabaghi A. Enhanced motor learning with bilateral transcranial direct current stimulation: Impact of polarity or current flow direction? Clin Neurophysiol. 2016 Apr;127(4):2119-26. doi: 10.1016/j.clinph.2015.12.020. Epub 2016 Jan 12. PubMed PMID: 26818881.

25: Brauchle D, Vukelić M, Bauer R, Gharabaghi A. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation. Front Hum Neurosci. 2015 Oct 16;9:564. doi: 10.3389/fnhum.2015.00564. eCollection 2015. PubMed PMID: 26528168; PubMed Central PMCID: PMC4607784.

26: Fukuda H, Morishita T, Ogata T, Saita K, Hyakutake K, Watanabe J, Shiota E, Inoue T. Tailor-made rehabilitation approach using multiple types of hybrid assistive limb robots for acute stroke patients: A pilot study. Assist Technol. 2016 Spring;28(1):53-6. doi: 10.1080/10400435.2015.1080768. PubMed PMID: 26478988.

27: Lobel DA, Lee KH. Brain machine interface and limb reanimation technologies: restoring function after spinal cord injury through development of a bypass system. Mayo Clin Proc. 2014 May;89(5):708-14. doi: 10.1016/j.mayocp.2014.02.003. Review. PubMed PMID: 24797649.

28: Arnaud E, De Pollak C, Meunier A, Sedel L, Damien C, Petite H. Osteogenesis with coral is increased by BMP and BMC in a rat cranioplasty. Biomaterials. 1999 Oct;20(20):1909-18. PubMed PMID: 10514067.


1)
Setoguchi D, Kinoshita K, Kamada S, Sakamoto T, Kise N, Kotani N, Goto K, Shiota E, Inoue T, Yamamoto T. Hybrid Assistive Limb improves restricted hip extension after total hip arthroplasty. Assist Technol. 2020 Jan 7. doi: 10.1080/10400435.2020.1712498. [Epub ahead of print] PubMed PMID: 31909703.
  • exoskeleton.txt
  • Last modified: 2025/05/13 02:15
  • by 127.0.0.1