====== Ventral Tegmental Area deep brain stimulation ====== {{rss>https://pubmed.ncbi.nlm.nih.gov/rss/search/1J3Q0COHK8s4j7Hc6Z1Ms00SZFEveJ1D_7xjxB4L94xJfkfcxb/?limit=15&utm_campaign=pubmed-2&fc=20241125031530}} The **[[Ventral Tegmental Area]] (VTA)** is a promising target for Deep Brain Stimulation (DBS) in the management of refractory chronic cluster headaches (CCH). This region is part of the brain's reward system and pain modulation pathways. ==== Rationale ==== * The VTA is involved in: * Pain perception and nociceptive processing. * Modulating reward circuits that can influence the affective components of pain. * It offers a unique mechanism of action compared to other DBS targets, such as the posterior hypothalamus. ==== Indications ==== * Patients with **chronic cluster headaches (CCH)** unresponsive to: * Standard medical treatments (e.g., triptans, CGRP inhibitors, verapamil). * Other neuromodulation therapies (e.g., occipital nerve stimulation, posterior hypothalamus DBS). * Those who are medically stable and suitable for surgical intervention. * Severe, disabling headache attacks with significant quality-of-life impairment. [[Ventral Tegmental Area deep brain stimulation for cluster headache]] ==== Procedure ==== * **Target Localization**: * The VTA is identified using MRI and stereotactic techniques. * Precise targeting is crucial due to its proximity to other midbrain structures. * **Electrode Implantation**: * Electrodes are implanted bilaterally or unilaterally depending on patient-specific factors. * Stimulation parameters are adjusted postoperatively. ==== Stimulation Parameters ==== * **Frequency**: 130–160 Hz. * **Pulse Width**: 60–90 μs. * **Amplitude**: 2–4 V (adjusted to minimize side effects and maximize efficacy). ==== Efficacy ==== * Emerging evidence shows that VTA DBS can: * Significantly reduce headache frequency and severity. * Improve patients’ quality of life. * Studies report a subset of patients achieving long-term pain relief with VTA DBS. ==== Side Effects ==== * Possible side effects include: * Mood alterations (e.g., euphoria, depression). * Autonomic disturbances. * Transient dizziness or gait instability. * Side effects are generally manageable with parameter adjustments. ==== Advantages ==== * May benefit patients who do not respond to posterior hypothalamus stimulation. * Targets a different pain modulation pathway, offering an alternative mechanism. ==== Limitations ==== * Limited clinical data compared to posterior hypothalamus DBS. * Requires further studies to establish standardized protocols and long-term outcomes. ==== Conclusion ==== VTA DBS is a novel and promising approach for treating refractory chronic cluster headaches. It offers a complementary mechanism to traditional DBS targets, particularly in patients who fail to respond to posterior hypothalamus stimulation. However, its use should be reserved for experienced centers as part of a multidisciplinary approach. ==== Literature ==== 1: Cohen B, Büttner-Ennever JA. Projections from the superior colliculus to a region of the central mesencephalic reticular formation (cMRF) associated with horizontal saccadic eye movements. Exp Brain Res. 1984;57(1):167-76. doi: 10.1007/BF00231143. PMID: 6519224. 2: Ammons WS. Characteristics of spinoreticular and spinothalamic neurons with renal input. J Neurophysiol. 1987 Sep;58(3):480-95. doi: 10.1152/jn.1987.58.3.480. PMID: 3655878. 3: Williams FG, Murtaugh MP, Beitz AJ. The effect of acute haloperidol treatment on brain proneurotensin mRNA: in situ hybridization analyses using a novel fluorescence detection procedure. Brain Res Mol Brain Res. 1990 May;7(4):347-58. doi: 10.1016/0169-328x(90)90084-q. PMID: 2163009. 4: Raos VC, Dermon CR, Savaki HE. Functional anatomy of the thalamic centrolateral nucleus as revealed with the [14C]deoxyglucose method following electrical stimulation and electrolytic lesion. Neuroscience. 1995 Sep;68(2):299-313. doi: 10.1016/0306-4522(95)00114-x. PMID: 7477942. 5: Hui KK, Liu J, Makris N, Gollub RL, Chen AJ, Moore CI, Kennedy DN, Rosen BR, Kwong KK. Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects. Hum Brain Mapp. 2000;9(1):13-25. doi: 10.1002/(sici)1097-0193(2000)9:1<13::aid- hbm2>3.0.co;2-f. PMID: 10643726; PMCID: PMC6871878. 6: Ohtori S, Takahashi K, Chiba T, Takahashi Y, Yamagata M, Sameda H, Moriya H. Fos expression in the rat brain and spinal cord evoked by noxious stimulation to low back muscle and skin. Spine (Phila Pa 1976). 2000 Oct 1;25(19):2425-30. doi: 10.1097/00007632-200010010-00002. PMID: 11013492. 7: Gollub RL, Hui KK, Stefano GB. Acupuncture: pain management coupled to immune stimulation. Zhongguo Yao Li Xue Bao. 1999 Sep;20(9):769-77. PMID: 11245083. 8: Korpas J, Jakus J. The expiration reflex from the vocal folds. Acta Physiol Hung. 2000;87(3):201-15. doi: 10.1556/APhysiol.87.2000.3.1. PMID: 11428747. 9: Simonyan K, Jürgens U. Afferent subcortical connections into the motor cortical larynx area in the rhesus monkey. Neuroscience. 2005;130(1):119-31. doi: 10.1016/j.neuroscience.2004.06.071. PMID: 15561430. 10: Hao J, Cabeza de Vaca S, Pan Y, Carr KD. Effects of central leptin infusion on the reward-potentiating effect of D-amphetamine. Brain Res. 2006 May 4;1087(1):123-33. doi: 10.1016/j.brainres.2006.03.002. Epub 2006 Apr 5. PMID: 16600190. 11: Georgiadis JR, Kortekaas R, Kuipers R, Nieuwenburg A, Pruim J, Reinders AA, Holstege G. Regional cerebral blood flow changes associated with clitorally induced orgasm in healthy women. Eur J Neurosci. 2006 Dec;24(11):3305-16. doi: 10.1111/j.1460-9568.2006.05206.x. PMID: 17156391. 12: Colussi-Mas J, Geisler S, Zimmer L, Zahm DS, Bérod A. Activation of afferents to the ventral tegmental area in response to acute amphetamine: a double-labelling study. Eur J Neurosci. 2007 Aug;26(4):1011-25. doi: 10.1111/j.1460-9568.2007.05738.x. PMID: 17714194; PMCID: PMC3235790. 13: Winter C, Lemke C, Sohr R, Meissner W, Harnack D, Juckel G, Morgenstern R, Kupsch A. High frequency stimulation of the subthalamic nucleus modulates neurotransmission in limbic brain regions of the rat. Exp Brain Res. 2008 Mar;185(3):497-507. doi: 10.1007/s00221-007-1171-1. Epub 2007 Oct 26. PMID: 17962928. 14: Alderson HL, Latimer MP, Winn P. A functional dissociation of the anterior and posterior pedunculopontine tegmental nucleus: excitotoxic lesions have differential effects on locomotion and the response to nicotine. Brain Struct Funct. 2008 Sep;213(1-2):247-53. doi: 10.1007/s00429-008-0174-4. Epub 2008 Feb 12. PMID: 18266007; PMCID: PMC2522332. 15: Friedman A, Frankel M, Flaumenhaft Y, Merenlender A, Pinhasov A, Feder Y, Taler M, Gil-Ad I, Abeles M, Yadid G. Programmed acute electrical stimulation of ventral tegmental area alleviates depressive-like behavior. Neuropsychopharmacology. 2009 Mar;34(4):1057-66. doi: 10.1038/npp.2008.177. Epub 2008 Oct 8. PMID: 18843267. 16: Haegelen C, Rouaud T, Darnault P, Morandi X. The subthalamic nucleus is a key-structure of limbic basal ganglia functions. Med Hypotheses. 2009 Apr;72(4):421-6. doi: 10.1016/j.mehy.2008.07.065. Epub 2009 Jan 20. PMID: 19157719. 17: Shon YM, Chang SY, Tye SJ, Kimble CJ, Bennet KE, Blaha CD, Lee KH. Comonitoring of adenosine and dopamine using the Wireless Instantaneous Neurotransmitter Concentration System: proof of principle. J Neurosurg. 2010 Mar;112(3):539-48. doi: 10.3171/2009.7.JNS09787. PMID: 19731995; PMCID: PMC2852872. 18: Friedman A, Lax E, Dikshtein Y, Abraham L, Flaumenhaft Y, Sudai E, Ben-Tzion M, Ami-Ad L, Yaka R, Yadid G. Electrical stimulation of the lateral habenula produces enduring inhibitory effect on cocaine seeking behavior. Neuropharmacology. 2010 Nov;59(6):452-9. doi: 10.1016/j.neuropharm.2010.06.008. Epub 2010 Jun 22. PMID: 20600170; PMCID: PMC2946513. 19: Li B, Piriz J, Mirrione M, Chung C, Proulx CD, Schulz D, Henn F, Malinow R. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature. 2011 Feb 24;470(7335):535-9. doi: 10.1038/nature09742. PMID: 21350486; PMCID: PMC3285101. 20: Friedman A, Lax E, Abraham L, Tischler H, Yadid G. Abnormality of VTA local field potential in an animal model of depression was restored by patterned DBS treatment. Eur Neuropsychopharmacol. 2012 Jan;22(1):64-71. doi: 10.1016/j.euroneuro.2011.04.005. Epub 2011 May 18. PMID: 21596531. 21: Lobo MK, Nestler EJ, Covington HE 3rd. Potential utility of optogenetics in the study of depression. Biol Psychiatry. 2012 Jun 15;71(12):1068-74. doi: 10.1016/j.biopsych.2011.12.026. Epub 2012 Feb 8. PMID: 22322104; PMCID: PMC3738208. 22: Dietz J, Noecker AM, McIntyre CC, Mikos A, Bowers D, Foote KD, Okun MS. Stimulation region within the globus pallidus does not affect verbal fluency performance. Brain Stimul. 2013 May;6(3):248-53. doi: 10.1016/j.brs.2012.05.011. Epub 2012 Jun 16. PMID: 22766102; PMCID: PMC3491090. 23: Oluigbo CO, Salma A, Rezai AR. Targeting the affective and cognitive aspects of chronic neuropathic pain using basal forebrain neuromodulation: rationale, review and proposal. J Clin Neurosci. 2012 Sep;19(9):1216-21. doi: 10.1016/j.jocn.2012.04.002. Epub 2012 Jul 5. PMID: 22771143. 24: Voges J, Müller U, Bogerts B, Münte T, Heinze HJ. Deep brain stimulation surgery for alcohol addiction. World Neurosurg. 2013 Sep-Oct;80(3-4):S28.e21-31. doi: 10.1016/j.wneu.2012.07.011. Epub 2012 Jul 21. PMID: 22824557. 25: Perez SM, Shah A, Asher A, Lodge DJ. Hippocampal deep brain stimulation reverses physiological and behavioural deficits in a rodent model of schizophrenia. Int J Neuropsychopharmacol. 2013 Jul;16(6):1331-9. doi: 10.1017/S1461145712001344. Epub 2012 Nov 28. PMID: 23190686; PMCID: PMC3685478. 26: Ewing SG, Grace AA. Deep brain stimulation of the ventral hippocampus restores deficits in processing of auditory evoked potentials in a rodent developmental disruption model of schizophrenia. Schizophr Res. 2013 Feb;143(2-3):377-83. doi: 10.1016/j.schres.2012.11.023. Epub 2012 Dec 24. PMID: 23269227; PMCID: PMC3547127. 27: Lax E, Friedman A, Croitoru O, Sudai E, Ben-Moshe H, Redlus L, Sasson E, Blumenfeld-Katzir T, Assaf Y, Yadid G. Neurodegeneration of lateral habenula efferent fibers after intermittent cocaine administration: implications for deep brain stimulation. Neuropharmacology. 2013 Dec;75:246-54. doi: 10.1016/j.neuropharm.2013.06.034. Epub 2013 Jul 24. PMID: 23891640. 28: Sesia T, Bizup B, Grace AA. Nucleus accumbens high-frequency stimulation selectively impacts nigrostriatal dopaminergic neurons. Int J Neuropsychopharmacol. 2014 Mar;17(3):421-7. doi: 10.1017/S1461145713001211. Epub 2013 Oct 17. PMID: 24131575; PMCID: PMC4454358. 29: Yan N, Chen N, Zhu H, Zhang J, Sim M, Ma Y, Wang W. High-frequency stimulation of nucleus accumbens changes in dopaminergic reward circuit. PLoS One. 2013 Nov 14;8(11):e79318. doi: 10.1371/journal.pone.0079318. PMID: 24244479; PMCID: PMC3828386. 30: Schluter EW, Mitz AR, Cheer JF, Averbeck BB. Real-time dopamine measurement in awake monkeys. PLoS One. 2014 Jun 12;9(6):e98692. doi: 10.1371/journal.pone.0098692. PMID: 24921937; PMCID: PMC4055617. 31: Dela Cruz JA, Hescham S, Adriaanse B, Campos FL, Steinbusch HW, Rutten BP, Temel Y, Jahanshahi A. Increased number of TH-immunoreactive cells in the ventral tegmental area after deep brain stimulation of the anterior nucleus of the thalamus. Brain Struct Funct. 2015 Sep;220(5):3061-6. doi: 10.1007/s00429-014-0832-7. Epub 2014 Jul 30. PMID: 25074751. 32: Mylius J, Happel MF, Gorkin AG, Huang Y, Scheich H, Brosch M. Fast transmission from the dopaminergic ventral midbrain to the sensory cortex of awake primates. Brain Struct Funct. 2015 Nov;220(6):3273-94. doi: 10.1007/s00429-014-0855-0. Epub 2014 Aug 2. PMID: 25084746. 33: Huang Y, Mylius J, Scheich H, Brosch M. Tonic effects of the dopaminergic ventral midbrain on the auditory cortex of awake macaque monkeys. Brain Struct Funct. 2016 Mar;221(2):969-77. doi: 10.1007/s00429-014-0950-2. Epub 2014 Nov 30. PMID: 25433449. 34: Gazit T, Friedman A, Lax E, Samuel M, Zahut R, Katz M, Abraham L, Tischler H, Teicher M, Yadid G. Programmed deep brain stimulation synchronizes VTA gamma band field potential and alleviates depressive-like behavior in rats. Neuropharmacology. 2015 Apr;91:135-41. doi: 10.1016/j.neuropharm.2014.12.003. Epub 2014 Dec 11. PMID: 25497452. 35: Döbrössy MD, Furlanetti LL, Coenen VA. Electrical stimulation of the medial forebrain bundle in pre-clinical studies of psychiatric disorders. Neurosci Biobehav Rev. 2015 Feb;49:32-42. doi: 10.1016/j.neubiorev.2014.11.018. Epub 2014 Dec 9. PMID: 25498857. 36: Anthofer JM, Steib K, Fellner C, Lange M, Brawanski A, Schlaier J. DTI-based deterministic fibre tracking of the medial forebrain bundle. Acta Neurochir (Wien). 2015 Mar;157(3):469-77. doi: 10.1007/s00701-014-2335-y. Epub 2015 Jan 15. PMID: 25585836. 37: Lee ST, Williams PA, Braine CE, Lin DT, John SW, Irazoqui PP. A Miniature, Fiber-Coupled, Wireless, Deep-Brain Optogenetic Stimulator. IEEE Trans Neural Syst Rehabil Eng. 2015 Jul;23(4):655-64. doi: 10.1109/TNSRE.2015.2391282. Epub 2015 Jan 15. PMID: 25608307. 38: Chen R, Romero G, Christiansen MG, Mohr A, Anikeeva P. Wireless magnetothermal deep brain stimulation. Science. 2015 Mar 27;347(6229):1477-80. doi: 10.1126/science.1261821. Epub 2015 Mar 12. PMID: 25765068. 39: Lim LW, Prickaerts J, Huguet G, Kadar E, Hartung H, Sharp T, Temel Y. Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms. Transl Psychiatry. 2015 Mar 31;5(3):e535. doi: 10.1038/tp.2015.24. PMID: 25826110; PMCID: PMC4354354. 40: Bregman T, Reznikov R, Diwan M, Raymond R, Butson CR, Nobrega JN, Hamani C. Antidepressant-like Effects of Medial Forebrain Bundle Deep Brain Stimulation in Rats are not Associated With Accumbens Dopamine Release. Brain Stimul. 2015 Jul- Aug;8(4):708-13. doi: 10.1016/j.brs.2015.02.007. Epub 2015 Mar 10. PMID: 25835354. 41: Cleary DR, Ozpinar A, Raslan AM, Ko AL. Deep brain stimulation for psychiatric disorders: where we are now. Neurosurg Focus. 2015 Jun;38(6):E2. doi: 10.3171/2015.3.FOCUS1546. PMID: 26030702. 42: Dupré DA, Tomycz N, Oh MY, Whiting D. Deep brain stimulation for obesity: past, present, and future targets. Neurosurg Focus. 2015 Jun;38(6):E7. doi: 10.3171/2015.3.FOCUS1542. PMID: 26030707. 43: Wen P, Li M, Xiao H, Ding R, Chen H, Chang J, Zhou M, Yang Y, Wang J, Zheng W, Zhang W. Low-frequency stimulation of the pedunculopontine nucleus affects gait and the neurotransmitter level in the ventrolateral thalamic nucleus in 6-OHDA Parkinsonian rats. Neurosci Lett. 2015 Jul 23;600:62-8. doi: 10.1016/j.neulet.2015.06.006. Epub 2015 Jun 6. PMID: 26054938. 44: Lovell JM, Mylius J, Scheich H, Brosch M. Stimulation of the Dopaminergic Midbrain as a Behavioral Reward in Instrumentally Conditioned Monkeys. Brain Stimul. 2015 Sep-Oct;8(5):868-74. doi: 10.1016/j.brs.2015.04.007. Epub 2015 May 16. PMID: 26070295. 45: Val-Laillet D, Aarts E, Weber B, Ferrari M, Quaresima V, Stoeckel LE, Alonso-Alonso M, Audette M, Malbert CH, Stice E. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin. 2015 Mar 24;8:1-31. doi: 10.1016/j.nicl.2015.03.016. PMID: 26110109; PMCID: PMC4473270. 46: Gesquière-Dando A, Guedj E, Loundou A, Carron R, Witjas T, Fluchère F, Delfini M, Mundler L, Regis J, Azulay JP, Eusebio A. A preoperative metabolic marker of parkinsonian apathy following subthalamic nucleus stimulation. Mov Disord. 2015 Nov;30(13):1767-76. doi: 10.1002/mds.26349. Epub 2015 Jul 31. PMID: 26228098. 47: Lüscher C, Pascoli V, Creed M. Optogenetic dissection of neural circuitry: from synaptic causalities to blue prints for novel treatments of behavioral diseases. Curr Opin Neurobiol. 2015 Dec;35:95-100. doi: 10.1016/j.conb.2015.07.005. Epub 2015 Aug 8. PMID: 26264408. 48: Mikell CB, Sinha S, Sheth SA. Neurosurgery for schizophrenia: an update on pathophysiology and a novel therapeutic target. J Neurosurg. 2016 Apr;124(4):917-28. doi: 10.3171/2015.4.JNS15120. Epub 2015 Oct 30. PMID: 26517767. 49: Furlanetti LL, Coenen VA, Döbrössy MD. Ventral tegmental area dopaminergic lesion-induced depressive phenotype in the rat is reversed by deep brain stimulation of the medial forebrain bundle. Behav Brain Res. 2016 Feb 15;299:132-40. doi: 10.1016/j.bbr.2015.11.036. Epub 2015 Dec 2. PMID: 26657994. 50: Li AL, Sibi JE, Yang X, Chiao JC, Peng YB. Stimulation of the ventral tegmental area increased nociceptive thresholds and decreased spinal dorsal horn neuronal activity in rat. Exp Brain Res. 2016 Jun;234(6):1505-14. doi: 10.1007/s00221-016-4558-z. Epub 2016 Jan 28. PMID: 26821313. 51: Oliva I, Wanat MJ. Ventral Tegmental Area Afferents and Drug-Dependent Behaviors. Front Psychiatry. 2016 Mar 7;7:30. doi: 10.3389/fpsyt.2016.00030. PMID: 27014097; PMCID: PMC4780106. 52: Akram H, Miller S, Lagrata S, Hyam J, Jahanshahi M, Hariz M, Matharu M, Zrinzo L. Ventral tegmental area deep brain stimulation for refractory chronic cluster headache. Neurology. 2016 May 3;86(18):1676-82. doi: 10.1212/WNL.0000000000002632. Epub 2016 Mar 30. PMID: 27029635; PMCID: PMC4854586. 53: Miller S, Sinclair AJ, Davies B, Matharu M. Neurostimulation in the treatment of primary headaches. Pract Neurol. 2016 Oct;16(5):362-75. doi: 10.1136/practneurol-2015-001298. Epub 2016 May 5. PMID: 27152027; PMCID: PMC5036247. 54: Bruchim-Samuel M, Lax E, Gazit T, Friedman A, Ahdoot H, Bairachnaya M, Pinhasov A, Yadid G. Electrical stimulation of the vmPFC serves as a remote control to affect VTA activity and improve depressive-like behavior. Exp Neurol. 2016 Sep;283(Pt A):255-63. doi: 10.1016/j.expneurol.2016.05.016. Epub 2016 May 12. PMID: 27181412. 55: Batra V, Tran TL, Caputo J, Guerin GF, Goeders NE, Wilden J. Intermittent bilateral deep brain stimulation of the nucleus accumbens shell reduces intravenous methamphetamine intake and seeking in Wistar rats. J Neurosurg. 2017 Apr;126(4):1339-1350. doi: 10.3171/2016.4.JNS152524. Epub 2016 Jul 8. PMID: 27392268. 56: Miller S, Akram H, Lagrata S, Hariz M, Zrinzo L, Matharu M. Ventral tegmental area deep brain stimulation in refractory short-lasting unilateral neuralgiform headache attacks. Brain. 2016 Oct;139(Pt 10):2631-2640. doi: 10.1093/brain/aww204. Epub 2016 Aug 14. PMID: 27524793. 57: Melse M, Temel Y, Tan SK, Jahanshahi A. Deep brain stimulation of the rostromedial tegmental nucleus: An unanticipated, selective effect on food intake. Brain Res Bull. 2016 Oct;127:23-28. doi: 10.1016/j.brainresbull.2016.08.004. Epub 2016 Aug 9. PMID: 27520392. 58: Meidahl AC, Orlowski D, Sørensen JC, Bjarkam CR. The Retrograde Connections and Anatomical Segregation of the Göttingen Minipig Nucleus Accumbens. Front Neuroanat. 2016 Dec 5;10:117. doi: 10.3389/fnana.2016.00117. PMID: 27994542; PMCID: PMC5136552. 59: Settell ML, Testini P, Cho S, Lee JH, Blaha CD, Jo HJ, Lee KH, Min HK. Functional Circuitry Effect of Ventral Tegmental Area Deep Brain Stimulation: Imaging and Neurochemical Evidence of Mesocortical and Mesolimbic Pathway Modulation. Front Neurosci. 2017 Mar 3;11:104. doi: 10.3389/fnins.2017.00104. PMID: 28316564; PMCID: PMC5334355. 60: Cooper S, Robison AJ, Mazei-Robison MS. Reward Circuitry in Addiction. Neurotherapeutics. 2017 Jul;14(3):687-697. doi: 10.1007/s13311-017-0525-z. PMID: 28324454; PMCID: PMC5509624. 61: Madularu D, Kumaragamage C, Mathieu AP, Kulkarni P, Rajah MN, Gratton AP, Near J. A chronic in situ coil system adapted for intracerebral stimulation during MRI in rats. J Neurosci Methods. 2017 Jun 1;284:85-95. doi: 10.1016/j.jneumeth.2017.04.018. Epub 2017 Apr 29. PMID: 28460835. 62: Klanker M, Feenstra M, Willuhn I, Denys D. Deep brain stimulation of the medial forebrain bundle elevates striatal dopamine concentration without affecting spontaneous or reward-induced phasic release. Neuroscience. 2017 Nov 19;364:82-92. doi: 10.1016/j.neuroscience.2017.09.012. Epub 2017 Sep 14. PMID: 28918253. 63: Akram H, Miller S, Lagrata S, Hariz M, Ashburner J, Behrens T, Matharu M, Zrinzo L. Optimal deep brain stimulation site and target connectivity for chronic cluster headache. Neurology. 2017 Nov 14;89(20):2083-2091. doi: 10.1212/WNL.0000000000004646. Epub 2017 Oct 13. PMID: 29030455; PMCID: PMC5711503. 64: Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, Huang AJY, Hashimotodani Y, Kano M, Iwasaki H, Parajuli LK, Okabe S, Teh DBL, All AH, Tsutsui-Kimura I, Tanaka KF, Liu X, McHugh TJ. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science. 2018 Feb 9;359(6376):679-684. doi: 10.1126/science.aaq1144. PMID: 29439241. 65: Christensen AB, Sørensen JCH, Ettrup KS, Orlowski D, Bjarkam CR. Pirouetting pigs: A large non-primate animal model based on unilateral 6-hydroxydopamine lesioning of the nigrostriatal pathway. Brain Res Bull. 2018 May;139:167-173. doi: 10.1016/j.brainresbull.2018.02.010. Epub 2018 Feb 17. PMID: 29462643. 66: Dandekar MP, Fenoy AJ, Carvalho AF, Soares JC, Quevedo J. Deep brain stimulation for treatment-resistant depression: an integrative review of preclinical and clinical findings and translational implications. Mol Psychiatry. 2018 May;23(5):1094-1112. doi: 10.1038/mp.2018.2. Epub 2018 Feb 27. PMID: 29483673. 67: Ferraro S, Nigri A, Bruzzone MG, Brivio L, Proietti Cecchini A, Verri M, Chiapparini L, Leone M. Defective functional connectivity between posterior hypothalamus and regions of the diencephalic-mesencephalic junction in chronic cluster headache. Cephalalgia. 2018 Nov;38(13):1910-1918. doi: 10.1177/0333102418761048. Epub 2018 Mar 8. PMID: 29517304. 68: Levy A, Matharu MS. Short-Lasting Unilateral Neuralgiform Headache Attacks. Ann Indian Acad Neurol. 2018 Apr;21(Suppl 1):S31-S38. doi: 10.4103/aian.AIAN_356_17. PMID: 29720816; PMCID: PMC5909132. 69: Coenen VA, Schumacher LV, Kaller C, Schlaepfer TE, Reinacher PC, Egger K, Urbach H, Reisert M. The anatomy of the human medial forebrain bundle: Ventral tegmental area connections to reward-associated subcortical and frontal lobe regions. Neuroimage Clin. 2018 Mar 18;18:770-783. doi: 10.1016/j.nicl.2018.03.019. PMID: 29845013; PMCID: PMC5964495. 70: Ho AL, Salib AN, Pendharkar AV, Sussman ES, Giardino WJ, Halpern CH. The nucleus accumbens and alcoholism: a target for deep brain stimulation. Neurosurg Focus. 2018 Aug;45(2):E12. doi: 10.3171/2018.5.FOCUS18157. PMID: 30064314. 71: Coenen VA, Sajonz B, Reisert M, Bostroem J, Bewernick B, Urbach H, Jenkner C, Reinacher PC, Schlaepfer TE, Mädler B. Tractography-assisted deep brain stimulation of the superolateral branch of the medial forebrain bundle (slMFB DBS) in major depression. Neuroimage Clin. 2018 Aug 14;20:580-593. doi: 10.1016/j.nicl.2018.08.020. PMID: 30186762; PMCID: PMC6120598. 72: Vyas DB, Ho AL, Dadey DY, Pendharkar AV, Sussman ES, Cowan R, Halpern CH. Deep Brain Stimulation for Chronic Cluster Headache: A Review. Neuromodulation. 2019 Jun;22(4):388-397. doi: 10.1111/ner.12869. Epub 2018 Oct 10. PMID: 30303584. 73: Park YS, Sammartino F, Young NA, Corrigan J, Krishna V, Rezai AR. Anatomic Review of the Ventral Capsule/Ventral Striatum and the Nucleus Accumbens to Guide Target Selection for Deep Brain Stimulation for Obsessive-Compulsive Disorder. World Neurosurg. 2019 Jun;126:1-10. doi: 10.1016/j.wneu.2019.01.254. Epub 2019 Feb 18. PMID: 30790738. 74: Nowacki A, Moir L, Owen SL, Fitzgerald JJ, Green AL, Aziz TZ. Deep brain stimulation of chronic cluster headaches: Posterior hypothalamus, ventral tegmentum and beyond. Cephalalgia. 2019 Aug;39(9):1111-1120. doi: 10.1177/0333102419839992. Epub 2019 Mar 21. PMID: 30897941. 75: Cappon D, Ryterska A, Lagrata S, Miller S, Akram H, Hyam J, Zrinzo L, Matharu M, Jahanshahi M. Ventral tegmental area deep brain stimulation for chronic cluster headache: Effects on cognition, mood, pain report behaviour and quality of life. Cephalalgia. 2019 Aug;39(9):1099-1110. doi: 10.1177/0333102419839957. Epub 2019 Mar 21. PMID: 30897944. 76: de Oliveira JC, Drabowski BMB, Rodrigues SMAF, Maciel RM, Moraes MFD, Cota VR. Seizure suppression by asynchronous non-periodic electrical stimulation of the amygdala is partially mediated by indirect desynchronization from nucleus accumbens. Epilepsy Res. 2019 Aug;154:107-115. doi: 10.1016/j.eplepsyres.2019.05.009. Epub 2019 May 8. PMID: 31125838. 77: Coenen VA, Schlaepfer TE, Reinacher PC, Mast H, Urbach H, Reisert M. Machine learning-aided personalized DTI tractographic planning for deep brain stimulation of the superolateral medial forebrain bundle using HAMLET. Acta Neurochir (Wien). 2019 Aug;161(8):1559-1569. doi: 10.1007/s00701-019-03947-9. Epub 2019 May 30. PMID: 31144167; PMCID: PMC6616222. 78: Arsenault JT, Vanduffel W. Ventral midbrain stimulation induces perceptual learning and cortical plasticity in primates. Nat Commun. 2019 Aug 9;10(1):3591. doi: 10.1038/s41467-019-11527-9. PMID: 31399570; PMCID: PMC6689065. 79: Vannemreddy P, Slavin K. Nucleus Accumbens as a Novel Target for Deep Brain Stimulation in the Treatment of Addiction: A Hypothesis on the Neurochemical and Morphological Basis. Neurol India. 2019 Sep-Oct;67(5):1220-1224. doi: 10.4103/0028-3886.271239. PMID: 31744946. 80: Corrigan FM, Christie-Sands J. An innate brainstem self-other system involving orienting, affective responding, and polyvalent relational seeking: Some clinical implications for a "Deep Brain Reorienting" trauma psychotherapy approach. Med Hypotheses. 2020 Mar;136:109502. doi: 10.1016/j.mehy.2019.109502. Epub 2019 Nov 18. PMID: 31794877. 81: Coenen VA, Schlaepfer TE, Sajonz B, Döbrössy M, Kaller CP, Urbach H, Reisert M. Tractographic description of major subcortical projection pathways passing the anterior limb of the internal capsule. Corticopetal organization of networks relevant for psychiatric disorders. Neuroimage Clin. 2020;25:102165. doi: 10.1016/j.nicl.2020.102165. Epub 2020 Jan 11. PMID: 31954987; PMCID: PMC6965747. 82: Middlebrooks EH, Lin C, Okromelidze L, Lu CQ, Tatum WO, Wharen RE Jr, Grewal SS. Functional Activation Patterns of Deep Brain Stimulation of the Anterior Nucleus of the Thalamus. World Neurosurg. 2020 Apr;136:357-363.e2. doi: 10.1016/j.wneu.2020.01.108. Epub 2020 Jan 27. PMID: 32001414. 83: Torres CV, Blasco G, Navas García M, Ezquiaga E, Pastor J, Vega-Zelaya L, Pulido Rivas P, Pérez Rodrigo S, Manzanares R. Deep brain stimulation for aggressiveness: long-term follow-up and tractography study of the stimulated brain areas. J Neurosurg. 2020 Feb 7;134(2):366-375. doi: 10.3171/2019.11.JNS192608. PMID: 32032944. 84: Li H, McConnell GC. Intraoperative Microelectrode Recordings in Substantia Nigra Pars Reticulata in Anesthetized Rats. Front Neurosci. 2020 Apr 29;14:367. doi: 10.3389/fnins.2020.00367. PMID: 32410946; PMCID: PMC7201294. 85: Schaper FLWVJ, Plantinga BR, Colon AJ, Wagner GL, Boon P, Blom N, Gommer ED, Hoogland G, Ackermans L, Rouhl RPW, Temel Y. Deep Brain Stimulation in Epilepsy: A Role for Modulation of the Mammillothalamic Tract in Seizure Control? Neurosurgery. 2020 Sep 1;87(3):602-610. doi: 10.1093/neuros/nyaa141. PMID: 32421806; PMCID: PMC8210468. 86: Tan SZK, Temel Y, Chan AY, Mok ATC, Perucho JAU, Blokland A, Aquili L, Lim WL, Lim LW. Serotonergic treatment normalizes midbrain dopaminergic neuron increase after periaqueductal gray stimulation. Brain Struct Funct. 2020 Sep;225(7):1957-1966. doi: 10.1007/s00429-020-02102-w. Epub 2020 Jun 27. PMID: 32594260. 87: Chen S. Near-infrared Deep Brain Stimulation in Living Mice. Methods Mol Biol. 2020;2173:71-82. doi: 10.1007/978-1-0716-0755-8_4. PMID: 32651910. 88: Evidente VGH, Ponce FA, Evidente MH, Garrett R, Lambert M. Short-Lasting Unilateral Neuralgiform Headache With Conjunctival Injection and Tearing (SUNCT) Improves With Bilateral Ventral Tegmental Area Deep Brain Stimulation. Headache. 2020 Nov;60(10):2548-2554. doi: 10.1111/head.13989. Epub 2020 Oct 10. PMID: 33038268. 89: Elias GJB, Loh A, Gwun D, Pancholi A, Boutet A, Neudorfer C, Germann J, Namasivayam A, Gramer R, Paff M, Lozano AM. Deep brain stimulation of the brainstem. Brain. 2021 Apr 12;144(3):712-723. doi: 10.1093/brain/awaa374. PMID: 33313788; PMCID: PMC8041326. 90: Song N, Du J, Gao Y, Yang S. Epitranscriptome of the ventral tegmental area in a deep brain-stimulated chronic unpredictable mild stress mouse model. Transl Neurosci. 2020 Nov 3;11(1):402-418. doi: 10.1515/tnsci-2020-0146. PMID: 33343932; PMCID: PMC7724003. 91: Lippmann B, Barmashenko G, Funke K. Effects of repetitive transcranial magnetic and deep brain stimulation on long-range synchrony of oscillatory activity in a rat model of developmental schizophrenia. Eur J Neurosci. 2021 Apr;53(8):2848-2869. doi: 10.1111/ejn.15125. Epub 2021 Feb 6. PMID: 33480084. 92: Fenoy AJ, Quevedo J, Soares JC. Deep brain stimulation of the "medial forebrain bundle": a strategy to modulate the reward system and manage treatment-resistant depression. Mol Psychiatry. 2022 Jan;27(1):574-592. doi: 10.1038/s41380-021-01100-6. Epub 2021 Apr 26. PMID: 33903731. 93: Bian T, Meng W, Qiu M, Zhong Z, Lin Z, Zou J, Wang Y, Huang X, Xu L, Yuan T, Huang Z, Niu L, Meng L, Zheng H. Noninvasive Ultrasound Stimulation of Ventral Tegmental Area Induces Reanimation from General Anaesthesia in Mice. Research (Wash D C). 2021 Apr 12;2021:2674692. doi: 10.34133/2021/2674692. PMID: 33954291; PMCID: PMC8059556. 94: Fauser M, Ricken M, Markert F, Weis N, Schmitt O, Gimsa J, Winter C, Badstübner-Meeske K, Storch A. Subthalamic nucleus deep brain stimulation induces sustained neurorestoration in the mesolimbic dopaminergic system in a Parkinson's disease model. Neurobiol Dis. 2021 Aug;156:105404. doi: 10.1016/j.nbd.2021.105404. Epub 2021 May 24. PMID: 34044146. 95: Cappon D, Ryterska A, Akram H, Lagrata S, Cheema S, Hyam J, Zrinzo L, Matharu M, Jahanshahi M. The sensitivity to change of the cluster headache quality of life scale assessed before and after deep brain stimulation of the ventral tegmental area. J Headache Pain. 2021 Jun 6;22(1):52. doi: 10.1186/s10194-021-01251-5. PMID: 34092221; PMCID: PMC8182939. 96: Velasco F, Saucedo-Alvarado PE, Reichrath A, Valdés-Quiroz H, Aguado- Carrillo G, Velasco AL. Centromedian Nucleus and Epilepsy. J Clin Neurophysiol. 2021 Nov 1;38(6):485-493. doi: 10.1097/WNP.0000000000000735. PMID: 34261113. 97: Corripio I, Roldán A, McKenna P, Sarró S, Alonso-Solís A, Salgado L, Álvarez E, Molet J, Pomarol-Clotet E, Portella M. Target selection for deep brain stimulation in treatment resistant schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2022 Jan 10;112:110436. doi: 10.1016/j.pnpbp.2021.110436. Epub 2021 Sep 10. PMID: 34517055. 98: Rusche T, Kaufmann J, Voges J. Nucleus accumbens projections: Validity and reliability of fiber reconstructions based on high-resolution diffusion-weighted MRI. Hum Brain Mapp. 2021 Dec 15;42(18):5888-5910. doi: 10.1002/hbm.25657. Epub 2021 Sep 16. PMID: 34528323; PMCID: PMC8596959. 99: Hou X, Qiu Z, Xian Q, Kala S, Jing J, Wong KF, Zhu J, Guo J, Zhu T, Yang M, Sun L. Precise Ultrasound Neuromodulation in a Deep Brain Region Using Nano Gas Vesicles as Actuators. Adv Sci (Weinh). 2021 Nov;8(21):e2101934. doi: 10.1002/advs.202101934. Epub 2021 Sep 21. PMID: 34546652; PMCID: PMC8564444. 100: Liu C, Zhao Y, Cai X, Xie Y, Wang T, Cheng D, Li L, Li R, Deng Y, Ding H, Lv G, Zhao G, Liu L, Zou G, Feng M, Sun Q, Yin L, Sheng X. A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. Microsyst Nanoeng. 2020 Aug 24;6:64. doi: 10.1038/s41378-020-0176-9. PMID: 34567675; PMCID: PMC8433152. 101: Andree A, Li N, Butenko K, Kober M, Chen JZ, Higuchi T, Fauser M, Storch A, Ip CW, Kühn AA, Horn A, van Rienen U. Deep brain stimulation electrode modeling in rats. Exp Neurol. 2022 Apr;350:113978. doi: 10.1016/j.expneurol.2022.113978. Epub 2022 Jan 11. PMID: 35026227. 102: Tong Y, Pfeiffer L, Serchov T, Coenen VA, Döbrössy MD. Optogenetic stimulation of ventral tegmental area dopaminergic neurons in a female rodent model of depression: The effect of different stimulation patterns. J Neurosci Res. 2022 Mar;100(3):897-911. doi: 10.1002/jnr.25014. Epub 2022 Jan 28. PMID: 35088434. 103: Ioanas HI, Saab BJ, Rudin M. Whole-brain opto-fMRI map of mouse VTA dopaminergic activation reflects structural projections with small but significant deviations. Transl Psychiatry. 2022 Feb 14;12(1):60. doi: 10.1038/s41398-022-01812-5. PMID: 35165257; PMCID: PMC8844000. 104: Park K, Clare K, Volkow ND, Pan Y, Du C. Cocaine's effects on the reactivity of the medial prefrontal cortex to ventral tegmental area stimulation: optical imaging study in mice. Addiction. 2022 Aug;117(8):2242-2253. doi: 10.1111/add.15869. Epub 2022 Mar 31. PMID: 35293056; PMCID: PMC9801493. 105: Wu X, Jiang Y, Rommelfanger NJ, Yang F, Zhou Q, Yin R, Liu J, Cai S, Ren W, Shin A, Ong KS, Pu K, Hong G. Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window. Nat Biomed Eng. 2022 Jun;6(6):754-770. doi: 10.1038/s41551-022-00862-w. Epub 2022 Mar 21. PMID: 35314800; PMCID: PMC9232843. 106: Coenen VA, Sajonz BEA, Hurwitz TA, Böck M, Hosp JA, Reinacher PC, Urbach H, Blazhenets G, Meyer PT, Reisert M. A Neuroanatomy of Positive Affect Display - Subcortical Fiber Pathways Relevant for Initiation and Modulation of Smiling and Laughing. Front Behav Neurosci. 2022 Mar 30;16:817554. doi: 10.3389/fnbeh.2022.817554. PMID: 35464145; PMCID: PMC9022623. 107: Coenen VA, Schlaepfer TE, Meyer D, Kilian H, Spanier S, Sajonz BEA, Reinacher PC, Reisert M. Resolving dyskinesias at sustained anti-OCD efficacy by steering of DBS away from the anteromedial STN to the mesencephalic ventral tegmentum - case report. Acta Neurochir (Wien). 2022 Sep;164(9):2303-2307. doi: 10.1007/s00701-022-05206-w. Epub 2022 May 2. PMID: 35499574; PMCID: PMC9427876. 108: Bühning F, Miguel Telega L, Tong Y, Pereira J, Coenen VA, Döbrössy MD. Electrophysiological and molecular effects of bilateral deep brain stimulation of the medial forebrain bundle in a rodent model of depression. Exp Neurol. 2022 Sep;355:114122. doi: 10.1016/j.expneurol.2022.114122. Epub 2022 May 28. PMID: 35636499. 109: Smit RD, Mouchtouris N, Kang K, Reyes M, Sathe A, Collopy S, Prashant G, Yuan H, Evans JJ. Short-lasting unilateral neuralgiform headache attacks (SUNCT/SUNA): a narrative review of interventional therapies. J Neurol Neurosurg Psychiatry. 2023 Jan;94(1):49-56. doi: 10.1136/jnnp-2022-329588. Epub 2022 Aug 17. PMID: 35977820. 110: Lu C, Feng Y, Li H, Gao Z, Zhu X, Hu J. A preclinical study of deep brain stimulation in the ventral tegmental area for alleviating positive psychotic- like behaviors in mice. Front Hum Neurosci. 2022 Aug 10;16:945912. doi: 10.3389/fnhum.2022.945912. PMID: 36034113; PMCID: PMC9399924. 111: Han X, Liang Y, Hempel B, Jordan CJ, Shen H, Bi GH, Li J, Xi ZX. Cannabinoid CB1 Receptors Are Expressed in a Subset of Dopamine Neurons and Underlie Cannabinoid-Induced Aversion, Hypoactivity, and Anxiolytic Effects in Mice. J Neurosci. 2023 Jan 18;43(3):373-385. doi: 10.1523/JNEUROSCI.1493-22.2022. Epub 2022 Dec 14. PMID: 36517243; PMCID: PMC9864584. 112: Zhou H, Zhu J, Jia J, Xiang W, Peng H, Zhang Y, Liu B, Mu Y, Lu Y. The antidepressant effect of nucleus accumbens deep brain stimulation is mediated by parvalbumin-positive interneurons in the dorsal dentate gyrus. Neurobiol Stress. 2022 Sep 22;21:100492. doi: 10.1016/j.ynstr.2022.100492. PMID: 36532368; PMCID: PMC9755020. 113: Rezaei M, Raoufy MR, Fathollahi Y, Shojaei A, Mirnajafi-Zadeh J. Tonic and phasic stimulations of ventral tegmental area have opposite effects on pentylenetetrazol kindled seizures in mice. Epilepsy Res. 2023 Jan;189:107073. doi: 10.1016/j.eplepsyres.2022.107073. Epub 2022 Dec 27. PMID: 36584482. 114: Yuen J, Goyal A, Rusheen AE, Kouzani AZ, Berk M, Kim JH, Tye SJ, Blaha CD, Bennet KE, Lee KH, Shin H, Oh Y. High frequency deep brain stimulation can mitigate the acute effects of cocaine administration on tonic dopamine levels in the rat nucleus accumbens. Front Neurosci. 2023 Jan 30;17:1061578. doi: 10.3389/fnins.2023.1061578. PMID: 36793536; PMCID: PMC9922701. 115: Alosaimi F, Dominguez-Paredes D, Knoben R, Almasabi F, Hescham S, Kozielski K, Temel Y, Jahanshahi A. Wireless stimulation of the subthalamic nucleus with nanoparticles modulates key monoaminergic systems similar to contemporary deep brain stimulation. Behav Brain Res. 2023 Apr 27;444:114363. doi: 10.1016/j.bbr.2023.114363. Epub 2023 Feb 26. PMID: 36849047. 116: Zhang Y, Ma L, Zhang X, Yue L, Wang J, Zheng J, Cui S, Liu FY, Wang Z, Wan Y, Yi M. Deep brain stimulation in the lateral habenula reverses local neuronal hyperactivity and ameliorates depression-like behaviors in rats. Neurobiol Dis. 2023 May;180:106069. doi: 10.1016/j.nbd.2023.106069. Epub 2023 Mar 8. PMID: 36893902. 117: Haber SN, Lehman J, Maffei C, Yendiki A. The Rostral Zona Incerta: A Subcortical Integrative Hub and Potential Deep Brain Stimulation Target for Obsessive-Compulsive Disorder. Biol Psychiatry. 2023 Jun 1;93(11):1010-1022. doi: 10.1016/j.biopsych.2023.01.006. Epub 2023 Jan 18. PMID: 37055285. 118: Nikbakhtzadeh M, Ashabi G, Saadatyar R, Doostmohammadi J, Nekoonam S, Keshavarz M, Riahi E. Restoring the firing activity of ventral tegmental area neurons by lateral hypothalamic deep brain stimulation following morphine administration in rats. Physiol Behav. 2023 Aug 1;267:114209. doi: 10.1016/j.physbeh.2023.114209. Epub 2023 Apr 25. PMID: 37105347. 119: Esmaeili Tazangi P, Alosaimi F, Bakhtiarzadeh F, Shojaei A, Jahanshahi A, Mirnajafi-Zadeh J. Effect of Deep Brain Stimulation in The Ventral Tegmental Area on Neuronal Activity in Local and Remote Brain Regions in Kindled Mice. Cell J. 2023 Apr 1;25(4):273-286. doi: 10.22074/cellj.2023.557500.1058. PMID: 37210648; PMCID: PMC10201359. 120: Xian Q, Qiu Z, Murugappan S, Kala S, Wong KF, Li D, Li G, Jiang Y, Wu Y, Su M, Hou X, Zhu J, Guo J, Qiu W, Sun L. Modulation of deep neural circuits with sonogenetics. Proc Natl Acad Sci U S A. 2023 May 30;120(22):e2220575120. doi: 10.1073/pnas.2220575120. Epub 2023 May 22. PMID: 37216521; PMCID: PMC10235981. 121: Aibar-Durán JÁ, Corripio Collado I, Roldán Bejarano A, Sánchez Nevado R, Aracil Bolanos I, García-Cornet J, Alonso-Solís A, Grasa Bello EM, de Quintana Schmidt C, Muñoz Hernández F, Molet Teixidó J, Rodríguez RR. Long-term outcomes of deep brain stimulation for treatment-resistant schizophrenia: Exploring potential targets. J Psychiatr Res. 2023 Jul;163:296-304. doi: 10.1016/j.jpsychires.2023.05.056. Epub 2023 May 18. PMID: 37245316. 122: Helf C, Kober M, Markert F, Lanto J, Overhoff L, Badstübner-Meeske K, Storch A, Fauser M. Subthalamic nucleus deep brain stimulation induces nigrostriatal dopaminergic plasticity in a stable rat model of Parkinson's disease. Neuroreport. 2023 Jun 7;34(10):506-511. doi: 10.1097/WNR.0000000000001917. Epub 2023 May 20. PMID: 37270842; PMCID: PMC10234325. 123: Yuen J, Goyal A, Rusheen AE, Kouzani AZ, Berk M, Kim JH, Tye SJ, Abulseoud OA, Oesterle TS, Blaha CD, Bennet KE, Lee KH, Oh Y, Shin H. Oxycodone-induced dopaminergic and respiratory effects are modulated by deep brain stimulation. Front Pharmacol. 2023 Jun 20;14:1199655. doi: 10.3389/fphar.2023.1199655. PMID: 37408764; PMCID: PMC10318172. 124: Levinson S, Miller M, Iftekhar A, Justo M, Arriola D, Wei W, Hazany S, Avecillas-Chasin JM, Kuhn TP, Horn A, Bari AA. A structural connectivity atlas of limbic brainstem nuclei. Front Neuroimaging. 2023 Jan 12;1:1009399. doi: 10.3389/fnimg.2022.1009399. Erratum in: Front Neuroimaging. 2024 Apr 30;3:1405806. doi: 10.3389/fnimg.2024.1405806. PMID: 37555163; PMCID: PMC10406319. 125: Li SJ, Lo YC, Tseng HY, Lin SH, Kuo CH, Chen TC, Chang CW, Liang YW, Lin YC, Wang CY, Cho TY, Wang MH, Chen CT, Chen YY. Nucleus accumbens deep brain stimulation improves depressive-like behaviors through BDNF-mediated alterations in brain functional connectivity of dopaminergic pathway. Neurobiol Stress. 2023 Aug 22;26:100566. doi: 10.1016/j.ynstr.2023.100566. PMID: 37664874; PMCID: PMC10474237. 126: Blum K, Ashford JW, Kateb B, Sipple D, Braverman E, Dennen CA, Baron D, Badgaiyan R, Elman I, Cadet JL, Thanos PK, Hanna C, Bowirrat A, Modestino EJ, Yamamoto V, Gupta A, McLaughlin T, Makale M, Gold MS. Dopaminergic dysfunction: Role for genetic & epigenetic testing in the new psychiatry. J Neurol Sci. 2023 Oct 15;453:120809. doi: 10.1016/j.jns.2023.120809. Epub 2023 Sep 23. PMID: 37774561. 127: Cheema S, Ferreira F, Parras O, Lagrata S, Kamourieh S, Pakzad A, Zrinzo L, Matharu M, Akram H. Association of Clinical and Neuroanatomic Factors With Response to Ventral Tegmental Area DBS in Chronic Cluster Headache. Neurology. 2023 Dec 4;101(23):e2423-e2433. doi: 10.1212/WNL.0000000000207750. PMID: 37848331; PMCID: PMC10752645. 128: Tong Y, Cho S, Coenen VA, Döbrössy MD. Input-output relation of midbrain connectomics in a rodent model of depression. J Affect Disord. 2024 Jan 15;345:443-454. doi: 10.1016/j.jad.2023.10.124. Epub 2023 Oct 25. PMID: 37890539. 129: Grembecka B, Majkutewicz I, Harackiewicz O, Wrona D. Deep-Brain Subthalamic Nucleus Stimulation Enhances Food-Related Motivation by Influencing Neuroinflammation and Anxiety Levels in a Rat Model of Early-Stage Parkinson's Disease. Int J Mol Sci. 2023 Nov 29;24(23):16916. doi: 10.3390/ijms242316916. PMID: 38069238; PMCID: PMC10706602. 130: Wang W, Kevin Tang KW, Pyatnitskiy I, Liu X, Shi X, Huo D, Jeong J, Wynn T, Sangani A, Baker A, Hsieh JC, Lozano AR, Artman B, Fenno L, Buch VP, Wang H. Ultrasound-Induced Cascade Amplification in a Mechanoluminescent Nanotransducer for Enhanced Sono-Optogenetic Deep Brain Stimulation. ACS Nano. 2023 Dec 26;17(24):24936-24946. doi: 10.1021/acsnano.3c06577. Epub 2023 Dec 14. PMID: 38096422; PMCID: PMC10932741. 131: Kim YJ, Driscoll N, Kent N, Paniagua EV, Tabet A, Koehler F, Manthey M, Sahasrabudhe A, Signorelli L, Gregureć D, Anikeeva P. Magnetoelectric Nanodiscs Enable Wireless Transgene-Free Neuromodulation. bioRxiv [Preprint]. 2023 Dec 25:2023.12.24.573272. doi: 10.1101/2023.12.24.573272. Update in: Nat Nanotechnol. 2024 Oct 11. doi: 10.1038/s41565-024-01798-9. PMID: 38234742; PMCID: PMC10793401. 132: Song N, Liu Z, Gao Y, Lu S, Yang S, Yuan C. NAc-DBS corrects depression- like behaviors in CUMS mouse model via disinhibition of DA neurons in the VTA. Mol Psychiatry. 2024 May;29(5):1550-1566. doi: 10.1038/s41380-024-02476-x. Epub 2024 Feb 15. PMID: 38361128. 133: Varela RB, Boschen SL, Yates N, Houghton T, Blaha CD, Lee KH, Bennet KE, Kouzani AZ, Berk M, Quevedo J, Valvassori SS, Tye SJ. Anti-manic effect of deep brain stimulation of the ventral tegmental area in an animal model of mania induced by methamphetamine. Bipolar Disord. 2024 Jun;26(4):376-387. doi: 10.1111/bdi.13423. Epub 2024 Apr 1. PMID: 38558302. 134: Skandalakis GP, Neudorfer C, Payne CA, Bond E, Tavakkoli AD, Barrios- Martinez J, Trutti AC, Koutsarnakis C, Coenen VA, Komaitis S, Hadjipanayis CG, Stranjalis G, Yeh FC, Banihashemi L, Hong J, Lozano AM, Kogan M, Horn A, Evans LT, Kalyvas A. Establishing connectivity through microdissections of midbrain stimulation-related neural circuits. Brain. 2024 Sep 3;147(9):3083-3098. doi: 10.1093/brain/awae173. PMID: 38808482; PMCID: PMC11370807. 135: Vincent KF, Zhang ER, Cho AJ, Kato-Miyabe R, Mallari OG, Moody OA, Obert DP, Park GH, Solt K. Electrical stimulation of the ventral tegmental area restores consciousness from sevoflurane-, dexmedetomidine-, and fentanyl-induced unconsciousness in rats. Brain Stimul. 2024 May-Jun;17(3):687-697. doi: 10.1016/j.brs.2024.05.012. Epub 2024 May 29. PMID: 38821397; PMCID: PMC11212499. 136: Wang F, Dai L, Wang T, Zhang Y, Wang Y, Zhao Y, Pan Y, Bian L, Li D, Zhan S, Lai Y, Voon V, Sun B. Presurgical structural imaging and clinical outcome in combined bed nucleus of the stria terminalis-nucleus accumbens deep brain stimulation for treatment-resistant depression. Gen Psychiatr. 2024 Jun 21;37(3):e101210. doi: 10.1136/gpsych-2023-101210. PMID: 38912307; PMCID: PMC11191758. 137: Pour MG, Alaei H. The reinstatement of the expression phase of morphine- induced conditioned place preference in male Wistar rats under ventral tegmental area stimulation and brief inactivation. Res Pharm Sci. 2023 Nov 23;18(6):676-695. doi: 10.4103/1735-5362.389957. PMID: 39005563; PMCID: PMC11246116. 138: Zielinski JM, Reisert M, Sajonz BEA, Teo SJ, Thierauf-Emberger A, Wessolleck J, Frosch M, Spittau B, Leupold J, Döbrössy MD, Coenen VA. In Search for a Pathogenesis of Major Depression and Suicide-A Joint Investigation of Dopamine and Fiber Tract Anatomy Focusing on the Human Ventral Mesencephalic Tegmentum: Description of a Workflow. Brain Sci. 2024 Jul 18;14(7):723. doi: 10.3390/brainsci14070723. PMID: 39061463; PMCID: PMC11275155. 139: Miguel Telega L, Ashouri Vajari D, Ramanathan C, Coenen VA, Döbrössy MD. Chronic in vivo sequelae of repetitive acute mfb-DBS on accumbal dopamine and midbrain neuronal activity. J Neurochem. 2024 Sep 22. doi: 10.1111/jnc.16223. Epub ahead of print. PMID: 39308085. 140: Glud AN, Zaer H, Orlowski D, Nielsen MS, Sørensen JCH, Bjarkam CR. Anatomy and connectivity of the Göttingen minipig subgenual cortex (Brodmann area 25 homologue). Brain Struct Funct. 2024 Nov;229(8):1995-2010. doi: 10.1007/s00429-024-02855-8. Epub 2024 Sep 28. PMID: 39340562; PMCID: PMC11485045. 141: Kim YJ, Kent N, Vargas Paniagua E, Driscoll N, Tabet A, Koehler F, Malkin E, Frey E, Manthey M, Sahasrabudhe A, Cannon TM, Nagao K, Mankus D, Bisher M, de Nola G, Lytton-Jean A, Signorelli L, Gregurec D, Anikeeva P. Magnetoelectric nanodiscs enable wireless transgene-free neuromodulation. Nat Nanotechnol. 2024 Oct 11. doi: 10.1038/s41565-024-01798-9. Epub ahead of print. PMID: 39394431. 142: Goyal A, Cabrera JR, Blaha CD, Lee KH, Shin H, Oh Y. Ventral tegmental area deep brain stimulation reverses ethanol-induced dopamine increase in the rat nucleus accumbens. Biomed Eng Lett. 2024 Jul 9;14(6):1347-1354. doi: 10.1007/s13534-024-00408-w. PMID: 39465114; PMCID: PMC11502691. 143: Coenen VA, Zielinski JM, Sajonz BEA, Reinacher PC, Thierauf-Emberger A, Wessolleck J, Frosch M, Spittau B, Schläpfer TE, Baldermann JC, Endres D, Lagreze W, Döbrössy MD, Reisert M. Joint anatomical, histological and imaging investigation of the midbrain target region for superolateral medial forebrain bundle (slMFB) DBS. Stereotact Funct Neurosurg. 2024 Nov 11:1-22. doi: 10.1159/000541834. Epub ahead of print. PMID: 39527932.