====== Molecular fluorescence-guided surgery ======
1: Kurbegovic S, Juhl K, Sørensen KK, Leth J, Willemoe GL, Christensen A, Adams
Y, Jensen AR, von Buchwald C, Skjøth-Rasmussen J, Ploug M, Jensen KJ, Kjaer A.
[[IRDye800CW]] labeled uPAR-targeting peptide for fluorescence-guided glioblastoma
surgery: Preclinical studies in orthotopic xenografts. Theranostics. 2021 May
21;11(15):7159-7174. doi: 10.7150/thno.49787. PMID: 34158842; PMCID: PMC8210614.
2: Azari F, Kennedy G, Bernstein E, Delikatny J, Lee JYK, Kucharczuk J, Low PS,
Singhal S. Evaluation of OTL38-Generated Tumor-to-Background Ratio in
Intraoperative Molecular Imaging-Guided Lung Cancer Resections. Mol Imaging
Biol. 2021 Jun 8:10.1007/s11307-021-01618-9. doi: 10.1007/s11307-021-01618-9.
Epub ahead of print. PMID: 34101106; PMCID: PMC8651846.
3: Dijkstra BM, de Jong M, Stroet MCM, Andreae F, Dulfer SE, Everts M, Kruijff
S, Nonnekens J, den Dunnen WFA, Kruyt FAE, Groen RJM. Correction to: Evaluation
of Ac-Lys0(IRDye800CW)Tyr3-octreotate as a novel tracer
for SSTR2-targeted molecular fluorescence guided surgery in
meningioma. J Neurooncol. 2021 Jun;153(2):223. doi: 10.1007/s11060-021-03769-9.
Erratum for: J Neurooncol. 2021 Jun;153(2):211-222. PMID: 34014425; PMCID:
PMC8211574.
4: Azari F, Kennedy G, Bernstein E, Hadjipanayis C, Vahrmeijer A, Smith B,
Rosenthal E, Sumer B, Tian J, Henderson E, Lee A, Nguyen Q, Gibbs S, Pogue B,
Orringer D, Charalampaki C, Martin L, Tanyi J, Lee M, Lee JY, Singhal S.
Intraoperative molecular imaging clinical trials: a review of 2020 conference
proceedings. J Biomed Opt. 2021 May;26(5):050901. doi:
10.1117/1.JBO.26.5.050901. PMID: 34002555; PMCID: PMC8126806.
5: Stroet MCM, Dijkstra BM, Dulfer SE, Kruijff S, den Dunnen WFA, Kruyt FAE,
Groen RJM, Seimbille Y, Panth KM, Mezzanotte L, Lowik CWGM, de Jong M. Necrosis
binding of Ac-Lys0(IRDye800CW)-Tyr3-octreotate: a
consequence from cyanine-labeling of small molecules. EJNMMI Res. 2021 May
10;11(1):47. doi: 10.1186/s13550-021-00789-4. PMID: 33970376; PMCID: PMC8110618.
6: Proescholdt MA, Schödel P, Doenitz C, Pukrop T, Höhne J, Schmidt NO,
Schebesch KM. The Management of Brain Metastases-Systematic Review of
Neurosurgical Aspects. Cancers (Basel). 2021 Mar 31;13(7):1616. doi:
10.3390/cancers13071616. PMID: 33807384; PMCID: PMC8036330.
7: Dijkstra BM, de Jong M, Stroet MCM, Andreae F, Dulfer SE, Everts M, Kruijff
S, Nonnekens J, den Dunnen WFA, Kruyt FAE, Groen RJM. Evaluation of Ac-
Lys0(IRDye800CW)Tyr3-octreotate as a novel tracer for
SSTR2-targeted molecular fluorescence guided surgery in meningioma. J
Neurooncol. 2021 Jun;153(2):211-222. doi: 10.1007/s11060-021-03739-1. Epub 2021
Mar 26. Erratum in: J Neurooncol. 2021 May 20;: PMID: 33768405; PMCID:
PMC8211583.
8: Zhou Q, Vega Leonel JCM, Santoso MR, Wilson C, van den Berg NS, Chan CT,
Aryal M, Vogel H, Cayrol R, Mandella MJ, Schonig F, Lu G, Gambhir SS, Moseley
ME, Rosenthal EL, Grant GA. Molecular imaging of a fluorescent antibody against
epidermal growth factor receptor detects high-grade glioma. Sci Rep. 2021 Mar
11;11(1):5710. doi: 10.1038/s41598-021-84831-4. PMID: 33707521; PMCID:
PMC7952570.
9: De Ravin E, Phan HAT, Harmsen S, Cho SS, Teng CW, Petersson EJ, White C,
Galban EM, Hess R, Lee JYK. Somatostatin Receptor as a Molecular Imaging Target
in Human and Canine Cushing Disease. World Neurosurg. 2021 May;149:94-102. doi:
10.1016/j.wneu.2021.02.034. Epub 2021 Feb 16. PMID: 33601082.
10: Belykh E, Jubran JH, George LL, Bardonova L, Healey DR, Georges JF, Quarles
CC, Eschbacher JM, Mehta S, Scheck AC, Nakaji P, Preul MC. Molecular Imaging of
Glucose Metabolism for Intraoperative Fluorescence Guidance During Glioma
Surgery. Mol Imaging Biol. 2021 Aug;23(4):586-596. doi:
10.1007/s11307-021-01579-z. Epub 2021 Feb 5. PMID: 33544308.
11: He K, Chi C, Li D, Zhang J, Niu G, Lv F, Wang J, Che W, Zhang L, Ji N, Zhu
Z, Tian J, Chen X. Resection and survival data from a clinical trial of
glioblastoma multiforme-specific IRDye800-BBN fluorescence-guided surgery.
Bioeng Transl Med. 2020 Aug 31;6(1):e10182. doi: 10.1002/btm2.10182. PMID:
33532584; PMCID: PMC7823121.
----
[[Intraoperative imaging]] technologies, specifically 5-ALA and iMRI, may be of benefit in maximising extent of resection in participants with high-grade glioma. However, this is based on low- to very low-certainty evidence. Therefore, the short- and long-term neurological effects are uncertain. Effects of image-guided surgery on overall survival, progression-free survival, and quality of life are unclear. Network and traditional meta-analyses were not possible due to the identified high risk of bias, heterogeneity, and small trials included in this review. A brief economic commentary found limited economic evidence for the equivocal use of iMRI compared with conventional surgery. In terms of costs, one non-systematic review of economic studies suggested that, compared with standard surgery, use of image-guided surgery has an uncertain effect on costs and that 5-ALA was more costly. Further research, including completion of ongoing trials of ultrasound-guided surgery, is needed.
((Fountain DM, Bryant A, Barone DG, Waqar M, Hart MG, Bulbeck H, Kernohan A,
Watts C, Jenkinson MD. Intraoperative imaging technology to maximise extent of
resection for glioma: a network meta-analysis. Cochrane Database Syst Rev. 2021
Jan 4;1(1):CD013630. doi: 10.1002/14651858.CD013630.pub2. PMID: 33428222; PMCID:
PMC8094975.)).
----
13: Li D, Liu Q, Qi Q, Shi H, Hsu EC, Chen W, Yuan W, Wu Y, Lin S, Zeng Y, Xiao
Z, Xu L, Zhang Y, Stoyanova T, Jia W, Cheng Z. Gold Nanoclusters for NIR-II
Fluorescence Imaging of Bones. Small. 2020 Oct;16(43):e2003851. doi:
10.1002/smll.202003851. Epub 2020 Sep 30. PMID: 33000882.
14: Ni XR, Zhao YY, Cai HP, Yu ZH, Wang J, Chen FR, Yu YJ, Feng GK, Chen ZP.
Transferrin receptor 1 targeted optical imaging for identifying glioma margin in
mouse models. J Neurooncol. 2020 Jun;148(2):245-258. doi:
10.1007/s11060-020-03527-3. Epub 2020 May 13. PMID: 32405996.
15: Müther M, Stummer W. Ependymal fluorescence in fluorescence-guided resection
of malignant glioma: a systematic review. Acta Neurochir (Wien). 2020
Feb;162(2):365-372. doi: 10.1007/s00701-019-04144-4. Epub 2019 Nov 21. PMID:
31754847.
16: Kitagawa Y, Tanaka S, Kuriki Y, Yamamoto K, Ogasawara A, Nejo T, Matsuura R,
Koike T, Hana T, Takahashi S, Nomura M, Takayanagi S, Mukasa A, Kamiya M, Urano
Y, Saito N. Spray Fluorescent Probes for Fluorescence-Guided Neurosurgery. Front
Oncol. 2019 Aug 6;9:727. doi: 10.3389/fonc.2019.00727. PMID: 31448231; PMCID:
PMC6691768.
17: Charalampaki P, Nakamura M, Athanasopoulos D, Heimann A. Confocal-Assisted
Multispectral Fluorescent Microscopy for Brain Tumor Surgery. Front Oncol. 2019
Jul 18;9:583. doi: 10.3389/fonc.2019.00583. PMID: 31380264; PMCID: PMC6657348.
18: Almiron Bonnin DA, Havrda MC, Lee MC, Evans L, Ran C, Qian DC, Harrington
LX, Valdes PA, Cheng C, Amos CI, Harris BT, Paulsen KD, Roberts DW, Israel MA.
Characterizing the heterogeneity in 5-aminolevulinic acid-induced fluorescence
in glioblastoma. J Neurosurg. 2019 May 24;132(6):1706-1714. doi:
10.3171/2019.2.JNS183128. PMID: 31125970.
19: Erkkilä MT, Bauer B, Hecker-Denschlag N, Madera Medina MJ, Leitgeb RA,
Unterhuber A, Gesperger J, Roetzer T, Hauger C, Drexler W, Widhalm G, Andreana
M. Widefield fluorescence lifetime imaging of protoporphyrin IX for
fluorescence-guided neurosurgery: An ex vivo feasibility study. J Biophotonics.
2019 Jun;12(6):e201800378. doi: 10.1002/jbio.201800378. Epub 2019 Feb 20. PMID:
30636030; PMCID: PMC7065606.
20: Kröger S, Niehoff AC, Jeibmann A, Sperling M, Paulus W, Stummer W, Karst U.
Complementary Molecular and Elemental Mass-Spectrometric Imaging of Human Brain
Tumors Resected by Fluorescence-Guided Surgery. Anal Chem. 2018 Oct
16;90(20):12253-12260. doi: 10.1021/acs.analchem.8b03516. Epub 2018 Oct 2. PMID:
30215510.
21: Zhang DY, Singhal S, Lee JYK. Optical Principles of Fluorescence-Guided
Brain Tumor Surgery: A Practical Primer for the Neurosurgeon. Neurosurgery. 2019
Sep 1;85(3):312-324. doi: 10.1093/neuros/nyy315. PMID: 30085129.
22: Dijkstra BM, Motekallemi A, den Dunnen WFA, Jeltema JR, van Dam GM, Kruyt
FAE, Groen RJM. SSTR-2 as a potential tumour-specific marker for fluorescence-
guided meningioma surgery. Acta Neurochir (Wien). 2018 Aug;160(8):1539-1546.
doi: 10.1007/s00701-018-3575-z. Epub 2018 Jun 1. PMID: 29858948; PMCID:
PMC6060877.
23: Li D, Zhang J, Chi C, Xiao X, Wang J, Lang L, Ali I, Niu G, Zhang L, Tian J,
Ji N, Zhu Z, Chen X. First-in-human study of PET and optical dual-modality
image-guided surgery in glioblastoma using 68Ga-IRDye800CW-BBN.
Theranostics. 2018 Apr 3;8(9):2508-2520. doi: 10.7150/thno.25599. PMID:
29721096; PMCID: PMC5928906.
24: Brokinkel B, Kröger S, Senner V, Jeibmann A, Karst U, Stummer W. Visualizing
protoporphyrin IX formation in the dura tail of meningiomas by mass spectrometry
imaging. Acta Neurochir (Wien). 2018 Jul;160(7):1433-1437. doi:
10.1007/s00701-018-3488-x. Epub 2018 Feb 15. PMID: 29450654.
25: Aldave G, Gonzalez-Huarriz M, Rubio A, Romero JP, Ravi D, Miñana B,
Cuadrado-Tejedor M, García-Osta A, Verhaak R, Xipell E, Martinez-Vélez N, de la
Rocha AA, Puigdelloses M, García-Moure M, Marigil M, Gállego Pérez-Larraya J,
Marín-Bejar O, Huarte M, Carro MS, Ferrarese R, Belda-Iniesta C, Ayuso A, Prat-
Acín R, Pastor F, Díez-Valle R, Tejada S, Alonso MM. The aberrant splicing of
BAF45d links splicing regulation and transcription in glioblastoma. Neuro Oncol.
2018 Jun 18;20(7):930-941. doi: 10.1093/neuonc/noy007. PMID: 29373718; PMCID:
PMC6007380.
26: Kim S, Kim JE, Kim YH, Hwang T, Kim SK, Xu WJ, Shin JY, Kim JI, Choi H, Kim
HC, Cho HR, Choi A, Chowdhury T, Seo Y, Dho YS, Kim JW, Kim DG, Park SH, Kim H,
Choi SH, Park S, Lee SH, Park CK. Glutaminase 2 expression is associated with
regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma.
Sci Rep. 2017 Sep 22;7(1):12221. doi: 10.1038/s41598-017-12557-3. PMID:
28939850; PMCID: PMC5610329.
27: Tang J, Huang N, Zhang X, Zhou T, Tan Y, Pi J, Pi L, Cheng S, Zheng H, Cheng
Y. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor
receptor variant III for fluorescence imaging of glioma. Int J Nanomedicine.
2017 May 22;12:3899-3911. doi: 10.2147/IJN.S133166. PMID: 28579776; PMCID:
PMC5446962.
28: Inogés S, Tejada S, de Cerio AL, Gállego Pérez-Larraya J, Espinós J, Idoate
MA, Domínguez PD, de Eulate RG, Aristu J, Bendandi M, Pastor F, Alonso M, Andreu
E, Cardoso FP, Valle RD. A phase II trial of autologous dendritic cell
vaccination and radiochemotherapy following fluorescence-guided surgery in newly
diagnosed glioblastoma patients. J Transl Med. 2017 May 12;15(1):104. doi:
10.1186/s12967-017-1202-z. PMID: 28499389; PMCID: PMC5427614.
29: D'Amico RS, Englander ZK, Canoll P, Bruce JN. Extent of Resection in
Glioma-A Review of the Cutting Edge. World Neurosurg. 2017 Jul;103:538-549. doi:
10.1016/j.wneu.2017.04.041. Epub 2017 Apr 17. PMID: 28427971.
30: Senders JT, Muskens IS, Schnoor R, Karhade AV, Cote DJ, Smith TR, Broekman
ML. Agents for fluorescence-guided glioma surgery: a systematic review of
preclinical and clinical results. Acta Neurochir (Wien). 2017
Jan;159(1):151-167. doi: 10.1007/s00701-016-3028-5. Epub 2016 Nov 22. PMID:
27878374; PMCID: PMC5177668.
31: Belykh E, Martirosyan NL, Yagmurlu K, Miller EJ, Eschbacher JM,
Izadyyazdanabadi M, Bardonova LA, Byvaltsev VA, Nakaji P, Preul MC.
Intraoperative Fluorescence Imaging for Personalized Brain Tumor Resection:
Current State and Future Directions. Front Surg. 2016 Oct 17;3:55. doi:
10.3389/fsurg.2016.00055. PMID: 27800481; PMCID: PMC5066076.
32: Elliott JT, Samkoe KS, Davis SC, Gunn JR, Paulsen KD, Roberts DW, Pogue BW.
Image-derived arterial input function for quantitative fluorescence imaging of
receptor-drug binding in vivo. J Biophotonics. 2016 Mar;9(3):282-95. doi:
10.1002/jbio.201500162. Epub 2015 Sep 9. PMID: 26349671; PMCID: PMC5313240.
33: Pogue BW, Paulsen KD, Hull SM, Samkoe KS, Gunn J, Hoopes J, Roberts DW,
Strong TV, Draney D, Feldwisch J. Advancing Molecular-Guided Surgery through
probe development and testing in a moderate cost evaluation pipeline. Proc SPIE
Int Soc Opt Eng. 2015 Mar 4;9311:931112. doi: 10.1117/12.2083224. PMID:
25914500; PMCID: PMC4405779.
34: Swanson KI, Clark PA, Zhang RR, Kandela IK, Farhoud M, Weichert JP, Kuo JS.
Fluorescent cancer-selective alkylphosphocholine analogs for intraoperative
glioma detection. Neurosurgery. 2015 Feb;76(2):115-23; discussion 123-4. doi:
10.1227/NEU.0000000000000622. PMID: 25549194; PMCID: PMC4343207.
35: Moiyadi A, Syed P, Srivastava S. Fluorescence-guided surgery of malignant
gliomas based on 5-aminolevulinic acid: paradigm shifts but not a panacea. Nat
Rev Cancer. 2014 Feb;14(2):146. doi: 10.1038/nrc3566-c1. PMID: 24457418.
36: Ackerman SE, Wilson CM, Kahn SA, Kintzing JR, Jindal DA, Cheshier SH, Grant
GA, Cochran JR. A Bioengineered Peptide that Localizes to and Illuminates
Medulloblastoma: A New Tool with Potential for Fluorescence-Guided Surgical
Resection. Cureus. 2014;6(9):e207. doi: 10.7759/cureus.207. Epub 2014 Sep 17.
PMID: 28729960; PMCID: PMC5515084.
37: Chen X, Wang C, Teng L, Liu Y, Chen X, Yang G, Wang L, Liu H, Liu Z, Zhang
D, Zhang Y, Guan H, Li X, Fu C, Zhao B, Yin F, Zhao S. Calcitriol enhances
5-aminolevulinic acid-induced fluorescence and the effect of photodynamic
therapy in human glioma. Acta Oncol. 2014 Mar;53(3):405-13. doi:
10.3109/0284186X.2013.819993. Epub 2013 Sep 13. PMID: 24032442.
38: Suzuki T, Wada S, Eguchi H, Adachi J, Mishima K, Matsutani M, Nishikawa R,
Nishiyama M. Cadherin 13 overexpression as an important factor related to the
absence of tumor fluorescence in 5-aminolevulinic acid-guided resection of
glioma. J Neurosurg. 2013 Nov;119(5):1331-9. doi: 10.3171/2013.7.JNS122340. Epub
2013 Sep 6. PMID: 24010971.