====== Chemodynamic therapy ======
Fenton reaction-based chemodynamic [[therapy]] (CDT), which applies metal [[ion]]s to convert less active [[hydrogen peroxide]] (H2O2) into more harmful hydroxyl peroxide (·OH) for tumor treatment, has attracted increasing interest recently. However, the CDT is substantially hindered by [[glutathione]] (GSH) scavenging effect on ·OH, low intracellular H2O2 level, and low reaction rate, resulting in unsatisfactory efficacy. Here, a cancer cell membrane (CM)-camouflaged Au nanorod core/mesoporous MnO2 shell yolk-shell nanocatalyst embedded with glucose oxidase (GOD) and Dox (denoted as AMGDC) is constructed for synergistic triple-augmented CDT and chemotherapy of tumor under MRI/PAI guidance. Benefiting from the homologous adhesion and immune escaping property of the cancer CM, the nanocatalysts can target tumors and gradually accumulate in the tumor site. For triple-augmented CDT, first, the MnO2 shell reacts with intratumoral GSH to generate Mn2+ and glutathione disulfide, which achieves Fenton-like ion delivery and weakening of GSH-mediated scavenging effect, leading to GSH depletion-enhanced CDT. Second, the intratumoral glucose can be oxidized to H2O2 and gluconic acid by GOD, achieving supplementary H2O2-enhanced CDT. Next, the AuNRs absorbing in NIR-II elevate the local tumor temperature upon NIR-II laser irradiation, achieving photothermal-enhanced CDT. Dox is rapidly released for adjuvant chemotherapy due to responsive degradation of MnO2 shell. Moreover, GSH-activated PAI/MRI can be used to monitor CDT process. This study provides a great paradigm for enhancing CDT-mediated antitumor efficacy.
((Pan Y, Zhu Y, Xu C, Pan C, Shi Y, Zou J, Li Y, Hu X, Zhou B, Zhao C, Gao Q,
Zhang J, Wu A, Chen X, Li J. Biomimetic Yolk-Shell Nanocatalysts for Activatable
Dual-Modal-Image-Guided Triple-Augmented Chemodynamic Therapy of Cancer. ACS
Nano. 2022 Oct 31. doi: 10.1021/acsnano.2c08077. Epub ahead of print. PMID:
36315056.))
----
2: Liu D, Dai X, Ye L, Wang H, Qian H, Cheng H, Wang X. Nanotechnology meets
glioblastoma multiforme: Emerging therapeutic strategies. Wiley Interdiscip Rev
Nanomed Nanobiotechnol. 2022 Aug 12:e1838. doi: 10.1002/wnan.1838. Epub ahead of
print. PMID: 35959642.
3: Han W, Wang M, He H, Jiang Y, Lu C, Tu X. A procedurally activatable
nanoplatform for chemo/chemodynamic synergistic therapy. Biomater Sci. 2022 May
17;10(10):2673-2680. doi: 10.1039/d1bm01940f. PMID: 35437541.
4: Zhong X, Dai X, Wang Y, Wang H, Qian H, Wang X. Copper-based nanomaterials
for cancer theranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022
Jul;14(4):e1797. doi: 10.1002/wnan.1797. Epub 2022 Apr 13. PMID: 35419993.
5: Mu M, Chen H, Fan R, Wang Y, Tang X, Mei L, Zhao N, Zou B, Tong A, Xu J, Han
B, Guo G. A Tumor-Specific Ferric-Coordinated Epigallocatechin-3-gallate cascade
nanoreactor for glioblastoma therapy. J Adv Res. 2021 Jul 30;34:29-41. doi:
10.1016/j.jare.2021.07.010. PMID: 35024179; PMCID: PMC8655135.
6: Guan S, Liu X, Fu Y, Li C, Wang J, Mei Q, Deng G, Zheng W, Wan Z, Lu J. A
biodegradable "Nano-donut" for magnetic resonance imaging and enhanced
chemo/photothermal/chemodynamic therapy through responsive catalysis in tumor
microenvironment. J Colloid Interface Sci. 2022 Feb 15;608(Pt 1):344-354. doi:
10.1016/j.jcis.2021.09.186. Epub 2021 Sep 30. PMID: 34626980.
7: Ding B, Zheng P, Li D, Wang M, Jiang F, Wang Z, Ma P, Lin J. Tumor
microenvironment-triggered in situ cancer vaccines inducing dual
immunogenic cell death for elevated antitumor and antimetastatic therapy.
Nanoscale. 2021 Jun 24;13(24):10906-10915. doi: 10.1039/d1nr02018h. PMID:
34128036.
8: Li X, Wang Z, Ma M, Chen Z, Tang XL, Wang Z. Self-Assembly Iron Oxide
Nanoclusters for Photothermal-Mediated Synergistic Chemo/Chemodynamic Therapy. J
Immunol Res. 2021 Apr 7;2021:9958239. doi: 10.1155/2021/9958239. PMID: 33880384;
PMCID: PMC8046545.
9: Sui C, Tan R, Chen Y, Yin G, Wang Z, Xu W, Li X. MOFs-Derived Fe-N Codoped
Carbon Nanoparticles as O2-Evolving Reactor and ROS Generator for
CDT/PDT/PTT Synergistic Treatment of Tumors. Bioconjug Chem. 2021 Feb
17;32(2):318-327. doi: 10.1021/acs.bioconjchem.0c00694. Epub 2021 Feb 5. PMID:
33543921.
10: Tang XL, Wang Z, Zhu YY, Xiao H, Xiao Y, Cui S, Lin BL, Yang K, Liu HY.
Hypoxia-activated ROS burst liposomes boosted by local mild hyperthermia for
photo/chemodynamic therapy. J Control Release. 2020 Dec 10;328:100-111. doi:
10.1016/j.jconrel.2020.08.035. Epub 2020 Aug 26. PMID: 32858074.