# **Video Denoising**

Video denoising refers to the process of **removing noise from sequences of image frames** (videos) to enhance visual clarity and data quality. In medical imaging, especially in fields like light scattering imaging (LSI) or intraoperative video monitoring, denoising is critical for accurate interpretation and analysis.

### 1. Purpose

- **Improve image quality**: Reduce random noise while preserving structural details and motion consistency.
- **Enhance signal detection**: Boost signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for better visualization of tissues, tumors, or instruments.
- Facilitate automated analysis: Clean data improves the performance of AI and machine learning algorithms.

# 2. Techniques

- Traditional Filtering:
  - $\circ\,$  Gaussian blur, median filters, and temporal averaging
  - $\circ\,$  Fast but often results in loss of detail and motion blur
- Model-Based Methods:
  - Total variation minimization, block-matching (e.g., BM3D)
  - $\circ\,$  Require manual tuning and are computationally intensive
- Deep Learning-Based Methods:
  - FastDVDNet, DNNs, autoencoders, or GANs
  - Exploit temporal information and spatial correlations
  - Can be trained in a **self-supervised (unsupervised)** manner, avoiding the need for clean ground-truth videos
  - $\circ\,$  More robust to complex, dynamic noise

# 3. Applications in Neurosurgery

- Intraoperative Light Scattering Imaging (LSI):
  - $\circ\,$  Enhances visibility of brain structures, tumor margins, or blood flow dynamics
  - $\circ\,$  Reduces visual interference caused by tissue movement, blood, or lighting fluctuations
- Neuroendoscopy and Microscope Recordings:
  - $\circ\,$  Improves clarity in endoscopic video streams
  - $\circ\,$  Enables high-quality recordings for surgical planning, teaching, or AI training

#### • Post-processing of Surgical Videos:

 Denoised videos can be used for case documentation, outcome analysis, or dataset generation

# 4. Key Challenges

- Preserving fine details: Especially important for small vessels or tumor boundaries
- Real-time processing: Denoising must be fast enough for intraoperative use
- **Generalizability**: Algorithms must adapt to different lighting conditions, tissue types, and imaging setups

### 5. Recent Advances

• Lin et al. (2025)

<sup>1)</sup> proposed an **unsupervised adaptive denoising framework** using FastDVDNet and noise distribution maps to enhance LSI videos in applications such as nanoparticle analysis and single-cell imaging:

- Significant improvements in SNR and CNR
- Enhanced reliability in particle sizing and cell classification

Video denoising is a vital step in modern neurosurgical imaging workflows. By improving visual and analytical quality, it supports safer surgeries, better diagnostics, and the integration of advanced AI tools.

#### 1)

Lin M, Zheng Y, Yang L, Yan J, Ma X, Guo Y. Unsupervised Adaptive Deep Learning Framework for Video Denoising in Light Scattering Imaging. Anal Chem. 2025 May 22. doi: 10.1021/acs.analchem.4c06905. Epub ahead of print. PMID: 40405330.

From: https://neurosurgerywiki.com/wiki/ - **Neurosurgery Wiki** 

Permanent link: https://neurosurgerywiki.com/wiki/doku.php?id=video\_denoising



Last update: 2025/05/23 05:42