2025/05/10 14:13 1/2 Vaccine Development

Vaccine Development

Vaccines are biological preparations that stimulate the immune system to recognize and fight infectious agents, without causing disease. The goal is to induce **protective immunity** and **herd immunity**.

☐ Phases of Vaccine Development

- 1. Exploratory Phase: Identification of potential antigens
- 2. Preclinical Testing: Animal models to test the immune response
- 3. Clinical Trials:
 - 1. *Phase I*: Safety and dose
 - 2. *Phase II*: Immunogenicity and safety
 - 3. *Phase III*: Efficacy and rare side effects
 - 4. *Phase IV*: Post-marketing surveillance
- 4. Regulatory Review (FDA, EMA, etc.)
- 5. Manufacturing and Distribution

☐ Types of Vaccines

Туре	Example	Notes
Live attenuated	MMR, Yellow Fever	Strong immunity, not for immunocompromised
Inactivated	Polio (IPV), Hepatitis A	Safer but may require boosters
Subunit / Recombinant	HPV, Hepatitis B	Specific antigens only
Toxoid	Tetanus, Diphtheria	Inactivated toxins
Viral vector	J&J COVID-19, AstraZeneca	Delivers antigen via harmless virus
mRNA-based	Pfizer-BioNTech, Moderna	No virus; fast to design and produce

☐ How Vaccines Work

- 1. Antigen is introduced into the body
- 2. Innate immune response is triggered
- 3. Antigen-presenting cells activate T and B lymphocytes
- 4. **Memory cells** are formed
- 5. Upon future infection, the response is **rapid and stronger**

Modern Innovations

- mRNA vaccines (e.g., COVID-19)
- Self-amplifying RNA (saRNA)
- Nanoparticle carriers
- Universal vaccines (e.g., flu)
- Cancer vaccines (personalized neoantigen therapy)

Last update: 2025/04/29 20:27

△ Challenges in Development

- 1. Antigen variability (e.g., influenza)
- 2. Logistics and cold chain requirements
- 3. Public vaccine hesitancy
- 4. Rare adverse events
- 5. Equitable global access

- Eradication of smallpox
- Near-eradication of polio
- · Major reductions in childhood mortality
- Crucial role in pandemic response (e.g., COVID-19)

□ Summary

Vaccine development is a multi-phase, interdisciplinary process. With tools like **mRNA**, **nanotechnology**, and **personalized immunotherapy**, the field is evolving rapidly to address both **infectious and non-infectious** diseases.

From:

https://neurosurgerywiki.com/wiki/ - Neurosurgery Wiki

Permanent link:

https://neurosurgerywiki.com/wiki/doku.php?id=vaccine_development

Last update: 2025/04/29 20:27

