Spontaneous Non-aneurysmal subarachnoid hemorrhage

Recent data showed increasing numbers of cases of spontaneous nonaneurysmal subarachnoid hemorrhage.

Spontaneous Subarachnoid Hemorrhage with Negative Angiography can be determined in 14-22 %.

Intracranial arteriovenous malformation (AVM): 45% of cases (AVMs more commonly cause ICH & IVH than SAH)

Certain vasculitides that involve the CNS

Rarely due to tumor

Cerebral artery dissection (may also be posttraumatic)

Rupture of a small superficial artery

Rupture of an infundibulum

Coagulation disorders:

latrogenic or bleeding dyscrasias:

Thrombocytopenia

Dural sinus thrombosis

Spinal AVM: usually cervical or upper thoracic

Pretruncal nonaneurysmal SAH

Perimesencephalic nonaneurysmal subarachnoid hemorrhage

Rarely reported with some drugs: e.g. cocaine

Sickle cell anemia

Pituitary apoplexy

Outcome

The studies show a low complication rate for subarachnoid hemorrhage (SAH) patients with a normal angiography, especially in the perimesencephalic subarachnoid hemorrhage group. The prognosis appears to be less favorable in terms of a more frequent need for external ventricular drainage (EVD), so a more cautious approach is recommended in this subgroup ¹⁾.

Case series

2015

Between 1999 and 2013, 214 patients suffered from nonaneurysmal subarachnoid hemorrhage (NASAH), 14% of all patients with SAH. Outcome was assessed according to the modified Rankin Scale (mRS) at 6 months. Risk factors were identified based on the outcome.

The number of patients with NASAH increased significantly in the last 15 years of the study period. There was a statistically significant increase in the rate of nonperimesencephalic (NPM)-SAH occurrence and antiplatelet agents use, while the proportion of elderly patients remained stable.

Favorable outcome (mRS 0-2) was achieved in 85% of cases, but patients treated with antiplatelet agents had a significantly higher risk for an unfavorable outcome. Further analysis showed that elderly patients, and especially the subgroup with a Fisher Scale 3 bleeding pattern, had a high risk for an unfavorable outcome, whereas the subgroup of NPM-SAH without a Fisher Grade 3 bleeding pattern had a favorable outcome, similar to perimesencephalic subarachnoid hemorrhage (PM)-SAH.

Over the years, a significant increase in the number of patients with NASAH has been observed. Also, the rate of aCP use has increased significantly. Risk factors for an unfavorable outcome were age > 65 years, Fisher Grade 3 bleeding pattern, and aCP use. Both "PM-SAH" and "NPM-SAH without a Fisher Grade 3 bleeding pattern" had excellent outcomes. Patients with NASAH and a Fisher Grade 3 bleeding pattern had a significantly higher risk for an unfavorable outcome and death. Therefore, for further investigations, NPM-SAH should be stratified into patients with or without a Fisher Grade 3 bleeding pattern. Also, cases of spontaneous SAH should be stratified into NASAH and aneurysmal SAH ²⁾.

2014

From 1999 to 2009, data of 125 patients with non-aneurysmal SAH were prospectively entered into a database. All patients underwent repetitive cerebral angiography. Outcome was assessed according to the modified Rankin Scale (mRS) (mRS 0-2 favorable vs. 3-6 unfavorable). Also, patients were divided in two groups according to the distribution of blood in the CT scan (perimesencephalic and non-perimesencephalic SAH).

106 of the 125 patients were in good WFNS grade (I-III) at admission (85%). Overall, favorable outcome was achieved in 104 of 125 patients (83%). Favorable outcome was associated with younger age (P < 0.001), good admission status (P < 0.0001), and absence of hydrocephalus (P = 0.001).73 of the 125 patients suffered from perimesencephalic SAH, most patients (90%) were in good grade at admission, and 64 achieved favorable outcome.52 of the 125 patients suffered from non-perimesencephalic SAH and 40 were in good grade at admission. Also 40 patients achieved favorable outcome.

Patients suffering from non-aneurysmal SAH have better prognosis compared to aneurysm related SAH and poor admission status was the only independent predictor of unfavorable outcome in the multivariate analysis. Patients with a non-perimesencephalic SAH have an increased risk of a worse neurological outcome. These patients should be monitored attentively ³⁾.

Non perimesencephalic subarachnoid hemorrhage.

Non-aneurysmal perimesencephalic subarachnoid hemorrhage.

Traumatic subarachnoid hemorrhage, the most common cause of SAH.

Outcome

see Non aneurysmal subarachnoid hemorrhage outcome.

Case series

From 2006 to 2017, 154 patients suffering from non-aneurysmal SAH were admitted to the Department of Neurosurgery, Rheinische Friedrich-Wilhelms-University Bonn, Germany.

Patients were stratified according to the distribution of cisternal blood into patients with perimesencephalic subarachnoid hemorrhage (pSAH) versus non-perimesencephalic SAH (npSAH). C reactive protein (CRP) and white blood cells (WBC) assessments were performed within 24 h of admission as part of routine laboratory workup. Outcome was assessed according to the modified Rankin Scale (mRS) after 6 months and stratified into favorable (mRS 0-2) vs. unfavorable (mRS 3-6).

The multivariate regression analysis revealed "CRP > 5 mg/l" (p = 0.004, OR 143.7), "WBC count > 12.1 G/l" (p = 0.006, OR 47.8), "presence of IVH" (p = 0.02, OR 13.5), "poor-grade SAH" (p = 0.01, OR 45.2) and "presence of CVS" (p = 0.003, OR 149.9) as independently associated with unfavorable outcome in patients with non-aneurysmal SAH.

Elevated C-reactive protein and WBC count at admission were associated with unfavorable outcome after non-aneurysmal SAH ⁴⁾.

1)

Canneti B, Mosqueira AJ, Nombela F, Gilo F, Vivancos J. Spontaneous Subarachnoid Hemorrhage with Negative Angiography Managed in a Stroke Unit: Clinical and Prognostic Characteristics. J Stroke Cerebrovasc Dis. 2015 Nov;24(11):2484-90. doi: 10.1016/j.jstrokecerebrovasdis.2015.06.011. Epub 2015 Sep 12. PubMed PMID: 26375795.

2)

Konczalla J, Platz J, Schuss P, Vatter H, Seifert V, Güresir E. Non-aneurysmal non-traumatic subarachnoid hemorrhage: patient characteristics, clinical outcome and prognostic factors based on a single-center experience in 125 patients. BMC Neurol. 2014 Jul 1;14(1):140. doi: 10.1186/1471-2377-14-140. PubMed PMID: 24986457; PubMed Central PMCID: PMC4088361.

3)

Konczalla J, Platz J, Schuss P, Vatter H, Seifert V, Güresir E. Non-aneurysmal non-traumatic subarachnoid hemorrhage: patient characteristics, clinical outcome and prognostic factors based on a single-center experience in 125 patients. BMC Neurol. 2014 Jul 1;14:140. doi: 10.1186/1471-2377-14-140. PubMed PMID: 24986457; PubMed Central PMCID: PMC4088361.

4)

Schuss P, Hadjiathanasiou A, Brandecker S, Güresir Á, Vatter H, Güresir E. Elevated C-reactive protein and white blood cell count at admission predict functional outcome after non-aneurysmal

subarachnoid hemorrhage. J Neurol. 2018 Oct 13. doi: 10.1007/s00415-018-9091-5. [Epub ahead of print] PubMed PMID: 30317466.

From:

https://neurosurgerywiki.com/wiki/ - Neurosurgery Wiki

Permanent link:

 $https://neurosurgerywiki.com/wiki/doku.php?id=spontaneous_non-aneurysmal_subarachnoid_hemorrhagentaneous_hemorrhagentaneous_hemorrhagentaneous_hemorrhagentaneous_he$

Last update: 2024/06/07 02:52

