Piezoelectric

Piezoelectricity is the electric charge that accumulates in certain solid materials (such as crystals, certain ceramics, and biological matter such as bone, DNA and various proteins) in response to applied mechanical stress. The word piezoelectricity means electricity resulting from pressure. It is derived from the Greek piezo or piezein (π ιέζειν), which means to squeeze or press, and electric or electron (ήλεκτρον), which means amber, an ancient source of electric charge.

Piezoelectricity was discovered in 1880 by French physicists Jacques and Pierre Curie.

The piezoelectric effect is understood as the linear electromechanical interaction between the mechanical and the electrical state in crystalline materials with no inversion symmetry.

The piezoelectric effect is a reversible process in that materials exhibiting the direct piezoelectric effect (the internal generation of electrical charge resulting from an applied mechanical force) also exhibit the reverse piezoelectric effect (the internal generation of a mechanical strain resulting from an applied electrical field). For example, lead zirconate titanate crystals will generate measurable piezoelectricity when their static structure is deformed by about 0.1% of the original dimension. Conversely, those same crystals will change about 0.1% of their static dimension when an external electric field is applied to the material. The inverse piezoelectric effect is used in production of ultrasonic sound waves.

Piezoelectricity is found in useful applications such as the production and detection of sound, generation of high voltages, electronic frequency generation, microbalances, to drive an ultrasonic nozzle, and ultrafine focusing of optical assemblies. It is also the basis of a number of scientific instrumental techniques with atomic resolution, the scanning probe microscopies such as STM, AFM, MTA, SNOM, etc., and everyday uses such as acting as the ignition source for cigarette lighters and push-start propane barbecues.

see Piezoelectric surgery.

Reliable intraoperative delineation of tumor from healthy brain tissue is essentially based on the neurosurgeon's visual aspect and tactile impression of the considered tissue, which is-due to inherent low brain consistency contrast-a challenging task. Development of an intelligent artificial intraoperative tactile perception will be a relevant task to improve the safety during surgery, especially when-as for neuroendoscopy-tactile perception will be damped or-as for surgical robotic applications-will not be a priori existent.

Stroop et al. from the Department of Neurosurgery, Academic Hospital Cologne-Merheim, Department of Engineering Technology (INDI), Vrije Universiteit Brussel, Brussels, Belgium, presented the enhancements and the evaluation of a tactile sensor based on the use of a piezoelectric tactile sensor.

A robotic-driven piezoelectric bimorph sensor was excited using multisine to obtain the frequency response function of the contact between the sensor and fresh ex vivo porcine tissue probes. Based on load-depth, relaxation and creep response tests, viscoelastic parameters E1 and E2 for the elastic moduli and η for the viscosity coefficient have been obtained allowing tissue classification. Data analysis was performed by a multivariate cluster algorithm.

Cluster algorithm assigned five clusters for the assignment of white matter, basal ganglia and thalamus probes. Basal ganglia and white matter have been assigned to a common cluster, revealing a less discriminatory power for these tissue types, whereas thalamus was exclusively delineated; gray matter could even be separated in subclusters.

Bimorph-based, multisine-excited tactile sensors reveal a high sensitivity in ex vivo tissue-type differentiation. Although, the sensor principle has to be further evaluated, these data are promising ¹⁾.

1)

Stroop R, Nakamura M, Schoukens J, Oliva Uribe D. Tactile sensor-based real-time clustering for tissue differentiation. Int J Comput Assist Radiol Surg. 2018 Oct 6. doi: 10.1007/s11548-018-1869-5. [Epub ahead of print] PubMed PMID: 30293172.

From: https://neurosurgerywiki.com/wiki/ - **Neurosurgery Wiki**

Permanent link: https://neurosurgerywiki.com/wiki/doku.php?id=piezoelectric

Last update: 2024/06/07 02:49