2025/06/30 05:33 1/3 Misfolded Proteins

Misfolded Proteins

Misfolded proteins are aberrantly folded proteins that fail to achieve their functional threedimensional structure. This misfolding disrupts their normal function and often leads to aggregation, which is a hallmark of many neurodegenerative diseases.

Protein Folding Basics

- Proteins must fold into specific three-dimensional shapes to perform their biological functions.
- Folding is guided by:
 - 1. Amino acid sequence (primary structure).
 - 2. Interactions such as hydrogen bonding, hydrophobic interactions, and ionic bonds.
- Assisted by **chaperone proteins** to prevent misfolding and aggregation.

Causes of Protein Misfolding

- Genetic Mutations: Single-point mutations can destabilize protein folding (e.g., mutation in SOD1 in ALS).
- 2. **Post-translational Modifications**: Aberrant phosphorylation, glycation, or oxidation (e.g., hyperphosphorylated tau in Alzheimer's).
- 3. **Cellular Stress**: Oxidative stress, inflammation, or changes in pH.
- 4. **Aging**: Decline in protein quality control mechanisms, including chaperones and proteasomes.

Consequences of Protein Misfolding

- 1. **Loss of Function**: Misfolded proteins cannot perform their normal roles (e.g., prion protein in Creutzfeldt-Jakob disease).
- 2. **Gain of Toxic Function**: Misfolded proteins form toxic aggregates that interfere with cellular processes (e.g., beta-amyloid plaques in Alzheimer's).
- 3. Aggregation and Inclusion Bodies:
 - 1. Alzheimer's disease: Beta-amyloid plaques and tau tangles.
 - 2. Parkinson's disease: Alpha-synuclein aggregates (Lewy bodies).
 - 3. Huntington's disease: Mutant huntingtin protein aggregates.

Mechanisms of Toxicity

- Membrane Damage: Misfolded proteins disrupt cell membranes, causing ion leakage and cellular stress.
- **Disruption of Cellular Processes**: Inhibit proteasome activity, autophagy, and mitochondrial function.
- Neuroinflammation: Activation of microglia and astrocytes exacerbates damage.

Last update: 2025/01/23 10:36

Protein Quality Control Systems

To maintain proteostasis (protein homeostasis), cells employ:

- 1. **Molecular Chaperones**: Help proteins fold correctly (e.g., heat shock proteins).
- Ubiquitin-Proteasome System (UPS): Tags misfolded proteins with ubiquitin for degradation.
- 3. Autophagy-Lysosomal Pathway: Degrades aggregated proteins and damaged organelles.
- 4. **Endoplasmic Reticulum-Associated Degradation (ERAD)**: Clears misfolded proteins from the ER.

Misfolded Protein-Related Neurodegenerative Diseases

Disease	Misfolded Protein	Aggregation Type		
Alzheimer's disease	Beta-amyloid, Tau	Plaques, Neurofibrillary tangles		
Parkinson's disease	Alpha-synuclein	Lewy bodies		
Huntington's disease	Mutant huntingtin	Polyglutamine inclusions		
ALS	SOD1, TDP-43, FUS	Cytoplasmic inclusions		
Prion diseases	Prion protein (PrP	Sc)	Amyloid plaques

Therapeutic Approaches

- 1. **Reducing Misfolding**: Chaperone-based therapies (e.g., HSP inducers).
- Promoting Clearance: Enhancing autophagy or proteasome activity (e.g., ambroxol for Parkinson's).
- 3. Preventing Aggregation:
 - 1. Monoclonal antibodies against misfolded proteins (e.g., lecanemab for beta-amyloid in Alzheimer's).
- 4. **Small Molecule Stabilizers**: Stabilize the native conformation of proteins (e.g., tafamidis for transthyretin amyloidosis).
- 5. **Gene Therapy**: Correcting genetic defects.
- 6. **Immunotherapy**: Vaccines targeting misfolded proteins to stimulate clearance.

Emerging Research

- 1. **Structural Biology**: Advanced imaging techniques (e.g., cryo-EM) to study protein aggregates.
- 2. **Artificial Intelligence**: Predicting misfolding patterns and designing interventions.
- 3. **Gene Editing**: Correcting mutations associated with misfolding (e.g., CRISPR).

From:

https://neurosurgerywiki.com/wiki/ - Neurosurgery Wiki

Permanent link:

https://neurosurgerywiki.com/wiki/doku.php?id=misfolded_proteins

Last update: 2025/01/23 10:36

