Microneurosurgical Training

The Zurich Microsurgery Lab Experience

1/2

In a conference paper (Acta Neurochirurgica Supplement, Suppl. 136) – descriptive curriculum report Elisa Colombo et al. from the Zurich Microsurgery Lab, Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland; Utrecht, Netherlands (Van Doormaal) published in the Acta Neurochirurgica Supplement to present and evaluate a progressive, multimodal simulator-based microneurosurgical training curriculum developed in the Zurich Microsurgery Lab, spanning from basic skills to advanced cerebrovascular techniques using synthetic tubes, placenta models, 3D skulls, mixed reality, and cadaver specimens.

Conclusions: The curriculum offers a seamless, stage-wise skill acquisition pathway:

- **Phase 1:** Si- and silicon vessels on 1–2 mm tubes + UpSurgeOn 3D models.

- **Phase 2:** Perfused human placenta for vessel dissection, microanastomosis, aneurysm clipping simulation.

- **Phase 3:** Hyper-realistic 3D skull craniotomies, dura closure under microscope.

- Phase 4: VR/MxR anatomy via Augmedit.

- **Phase 5:** Advanced cadaver work—cadaver craniotomies + placenta perfusion for aneurysm clipping training :contentReference[oaicite:2]{index=2}.

All stages reported to build muscle memory, surgical confidence, and reduce risk in clinical settings.

Critical Review:

- **Strengths:** Well-structured progressive curriculum, innovative use of placenta perfusion, ethically sound (animal-free after placenta), incorporation of modern simulation tech (3D models, VR/MxR).

- **Weaknesses:** Lacks quantitative assessment data (e.g. objective performance metrics, skills retention measures). No formal validation or comparative outcomes vs. traditional training recorded.

- **External Comparisons:** Aligns with broader literature endorsing placenta and synthetic simulators as effective in microvascular training. However, lacks evidence of transfer to operating-room performance or direct comparisons (e.g. GEARS, time, error rates).

- **Novelty:** Unique combination of simulators staged by training level, especially Zürich's placenta protocol previously described

Final Verdict: A well-designed practical training framework, but limited by its purely descriptive nature and absence of validated outcome assessments.

Score: 6/10 – solid educational design, pending data-driven validation.

Takeaway for Practicing Neurosurgeons:

Consider implementing a staged simulator curriculum using silicon tubes, perfused placenta models, 3D skulls, VR/MxR, and cadaver work to build microsurgical skills gradually. However, institution of objective assessment tools is recommended for tracking competence and outcomes.

Bottom Line:

Zurich's multimodal simulator curriculum is a promising and ethically robust approach to microneurosurgical training, but demonstration of measured skill improvement and OR transfer is needed to confirm efficacy.

Citation: *Microneurosurgical Training on Simulators: The Zurich Microsurgery Lab Experience.* Colombo E et al. Acta Neurochir Suppl. 2025;136:173–176. doi:10.1007/978-3-031-89844-0_22. Published online 10 July 2025. Corresponding author: elisa.colombo@usz.ch.

Blog Integration

Categories: Microsurgery Training, Simulation, Medical Education **Tags:** Zurich Microsurgery Lab, simulator curriculum, placenta perfusion, 3D models, mixed reality, neurosurgical training

From: https://neurosurgerywiki.com/wiki/ - **Neurosurgery Wiki**

Permanent link: https://neurosurgerywiki.com/wiki/doku.php?id=microneurosurgical_training&rev=1752228572

