If you are using a **General Electric (GE)** MRI system, the equivalent sequence to **3D Balanced Fast Field Echo (3D bFFE)** or **Balanced Steady-State Free Precession (bSSFP)** is called **FIESTA** (**Fast Imaging Employing Steady-State Acquisition**).

Key Features of GE FIESTA 1. Steady-State Free Precession (SSFP):

- 1. Provides high signal intensity for fluids like blood or cerebrospinal fluid (CSF).
- 2. Combines T1 and T2-weighted contrast for excellent tissue differentiation where T2/T1 ratios are distinct.

2. **Applications:**

- 1. **Neuroimaging:** Visualization of CSF pathways, cranial nerves, and ventricles (e.g., aqueductal stenosis or hydrocephalus).
- 2. Cardiac Imaging: Evaluation of blood flow, ventricular function, and myocardial walls.
- 3. **Abdominal Imaging:** Depicts biliary and pancreatic ducts (MRCP) or vascular structures.
- 4. Musculoskeletal Imaging: Assessment of cartilage, joint fluid, and ligaments.

3. 3D Isotropic Imaging:

1. FIESTA can be acquired as a **3D sequence**, allowing isotropic resolution and enabling multiplanar reformatting for detailed visualization.

Advantages of GE FIESTA 1. High Contrast for Fluids:

1. Enhances visualization of structures like ventricles, aqueducts, and blood vessels.

2. Non-Contrast Imaging:

1. Provides high contrast without the need for gadolinium, which is especially beneficial for patients with contraindications to contrast agents.

3. Fast Acquisition:

1. Efficient scanning, suitable for time-sensitive protocols.

Challenges with FIESTA 1. Banding Artifacts:

- 1. Highly susceptible to magnetic field inhomogeneities, leading to dark bands near air-tissue or metal-tissue interfaces.
- 2. Requires good shimming and sometimes additional sequences to address artifacts.

2. Motion Sensitivity:

1. Though rapid, motion (e.g., breathing or cardiac motion) can degrade image quality in certain applications.

Neurosurgery Wiki - https://neurosurgerywiki.com/wiki/

Last update: 2025/04/29 20:30

Common Applications of GE FIESTA #### Neuroimaging:

- 1. High-resolution imaging of ventricles, aqueducts, and brainstem.
- 2. Detailed visualization of CSF flow in conditions like aqueductal stenosis, Chiari malformations, or hydrocephalus.

Cardiac Imaging:

- 1. Dynamic imaging of blood flow, ventricular function, and valve assessments.
- 2. Can quantify ventricular volumes and assess myocardial motion.

Abdominal Imaging:

- 1. Non-invasive MRCP (Magnetic Resonance Cholangiopancreatography) to visualize bile and pancreatic ducts.
- 2. Vascular imaging in the abdomen without contrast.

Musculoskeletal Imaging:

- 1. Imaging joints with effusions or cartilage abnormalities.
- 2. Useful in spine imaging for evaluating intervertebral discs and the spinal cord.

Optimizing FIESTA on GE Systems 1. Artifact Management:

- 1. Ensure proper field shimming to minimize banding artifacts.
- 2. Use parallel imaging or advanced techniques like FIESTA-C (FIESTA with phase cycling) to improve robustness in challenging areas.

2. Protocol Customization:

1. Adjust resolution and VENC (Velocity Encoding) parameters based on clinical needs (e.g., CSF vs. blood flow visualization).

GE FIESTA is highly versatile and widely used across imaging domains. Let me know if you'd like help tailoring this sequence for specific clinical applications or addressing particular challenges in your setting!

From:

https://neurosurgerywiki.com/wiki/ - Neurosurgery Wiki

Permanent link:

https://neurosurgerywiki.com/wiki/doku.php?id=general_electric

Last update: 2025/04/29 20:30

