🛛 CUSUM Analysis

Definition

CUSUM (Cumulative Sum Control Chart) analysis is a statistical technique used to monitor change detection over time. In medicine, it's widely applied to analyze **learning curves**—especially in surgical procedures—to detect improvement or deterioration in performance.

Cumulative sum (CUSUM) of deviations from a target performance level. Tracks case-by-case trends and identifies when competence is achieved or errors increase.

It plots the cumulative sum of deviations from a predefined target or acceptable outcome rate, providing a **visual and quantitative assessment** of proficiency acquisition.

In Surgical Training

CUSUM helps evaluate **how many procedures a surgeon needs** to achieve competency in a new technique, such as ube, laparoscopy, or microsurgery.

Key Uses:

- Detect performance trends over time
- Identify the "turning point" where the surgeon achieves acceptable performance
- Differentiate between competence, proficiency, and mastery

How It Works

Let:

- Xi = outcome of case *i* (success = 0, failure = 1)
- **p**₀ = acceptable failure rate
- **S**₀ = 0 (initial sum)
- Si = Si₋₁ + (Xi p₀)

Then:

- A steep upward trend suggests consistent failures (worsening performance)
- A downward slope indicates **learning and improvement**
- A flat line reflects **stable**, **competent performance**

Example in UBE

In a narrative_review on ube training, CUSUM analysis was used to assess:

- Early technical errors (e.g., incomplete decompression, nerve root irritation)
- Operative time benchmarks
- Conversion to open surgery

This method revealed that **significant proficiency** in UBE lumbar decompression was typically achieved after **20-30 cases**, depending on prior endoscopic experience ¹⁾.

Advantages

- Objective tool for tracking learning curves
- Provides early warning for declining performance
- Can be adapted to binary (success/failure) or continuous variables (e.g., operative time)

▲ Limitations

- Requires consistent, well-defined outcome measures
- Sensitive to data quality and completeness
- May need combination with other metrics (e.g., risk-adjusted CUSUM, EWMA)

CUSUM Analysis for Lumbar Puncture

~~TOC~~

Objective

To evaluate the learning curve of medical trainees performing **[lumbar_puncture]**, using **[cusum_analysis]** to track the rate of successful procedures and determine the point at which competency is achieved.

Method

Target failure rate (po): 20% **Success =** CSF obtained without requiring supervisor takeover **Failure =** CSF not obtained, traumatic puncture, or supervisor takeover

Let:

• Xi = 0 for success, 1 for failure

• Si = cumulative sum of (Xi - p_0)

Initial value $S_0 = 0$

Example Case Series (First 20 LPs)

Case #	Outcome	Xi	Si = Si - 1 + (Xi - 0.2)
1	Success	0	0 - 0.2 = -0.2
2	Success	0	-0.2 - 0.2 = -0.4
3	Failure	1	-0.4 + 0.8 = 0.4
4	Success	0	0.4 - 0.2 = 0.2
5	Success	0	0.2 - 0.2 = 0.0
6	Success	0	0.0 - 0.2 = -0.2
7	Success	0	-0.2 - 0.2 = -0.4
8	Failure	1	-0.4 + 0.8 = 0.4
9	Success	0	0.4 - 0.2 = 0.2
10	Success	0	0.2 - 0.2 = 0.0
11	Success	0	0.0 - 0.2 = -0.2
12	Success	0	-0.2 - 0.2 = -0.4
13	Success	0	-0.4 - 0.2 = -0.6
14	Success	0	-0.6 - 0.2 = -0.8
15	Failure	1	-0.8 + 0.8 = 0.0
16	Success	0	0.0 - 0.2 = -0.2
17	Success	0	-0.2 - 0.2 = -0.4
18	Success	0	-0.4 - 0.2 = -0.6
19	Success	0	-0.6 - 0.2 = -0.8
20	Success	0	-0.8 - 0.2 = -1.0

Interpretation

The **CUSUM chart** would show an **initial learning phase** with small performance fluctuations. Around case **15-20**, the steady negative slope indicates consistent success below the target failure rate, suggesting **competency is achieved** after ~18-20 procedures.

🛛 Takeaways

- CUSUM is a powerful tool to track [learning_curve] in procedural skills.
- In this example, the trainee reached proficiency in LP after \sim 20 cases.
- Regular monitoring helps detect early need for intervention or additional training.

CUSUM Analysis for Intracranial Pressure Monitor Placement

CUSUM Analysis for Intracranial Pressure Monitor Placement

1)

Espinoza XAS, Pérez EG, Choi DJ. The unilateral biportal endoscopy journey: proposing a 10-tier difficulty progression framework for unilateral biportal endoscopy. Asian Spine J. 2025 Apr 7. doi: 10.31616/asj.2025.0064. Epub ahead of print. PMID: 40195633.

From: https://neurosurgerywiki.com/wiki/ - **Neurosurgery Wiki**

Permanent link: https://neurosurgerywiki.com/wiki/doku.php?id=cusum_analysis

Last update: 2025/04/08 18:43